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Abstract

This primer provides a gentle introduction to the estimation and con-
trol of dynamic marketing models. It introduces dynamic models in
discrete- and continuous-time, scalar and multivariate settings, with
observed outcomes and unobserved states, as well as random and/or
time-varying parameters. It exemplifies how various dynamic models
can be cast into the unifying state space framework, the benefit of
which is to use one common algorithm to estimate all dynamic models.

The primer then focuses on the estimation part, which answers
questions such as: how much is the sales elasticity of advertising?
How much sales lift can managers expect for a certain level of price
promotion? What is the best sales forecast for the next quarter? The
estimation relies on two principles: Kalman filtering and the likelihood
principle. The Kalman filter recursively infers the means and covari-
ances of an unobserved state vector as the observed outcomes arrive
over time. This evolution of moments is then embedded in the likeli-
hood function to obtain parameter estimates and their statistical sig-
nificance.

Next, the primer elucidates the control part, which answers ques-
tions such as: how much should managers spend on advertising over
time and across regions? What is the best promotional timing and
depth? How should managers optimally respond to competing brands’
actions and resulting outcomes? The control part relies on the max-
imum principle and the optimality principle. Pontryagin’s maximum
principle allows managers to determine the optimal course of action
(for example, the optimal levels and timing of advertising spends or
price promotions) to attain a specified goal, such as profit maximiza-
tion. Bellman’s optimality principle, on the other hand, offers insights
into optimal course correction when implementing the best plan as the
state of a system varies dynamically and/or stochastically. Finally, the
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primer presents three examples on the application of optimal control,
differential games, and stochastic control theory to marketing prob-
lems, and illustrates how to discover novel insights into managerial
decision-making.
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1
Introduction

In 1696, Johann Bernoulli posed a challenge to his contemporary
“sharpest mathematical minds of the globe” with the following prob-
lem: If in a vertical plane two points A and B are given, then what is the
trajectory of an object C starting from A to arrive at B in the shortest
possible time falling under its own weight? He added that “this prob-
lem . . . is not . . . purely speculative and without practical use . . . Rather
it even appears . . . that it is very useful also for other branches of sci-
ence than mechanics.” This problem is called Brachystochrone problem
because, in Greek, βραχιστζ = shortest and χρoνoζ = time. Leib-
niz described this problem as “splendid” and furnished the solution (a
cycloid) in a letter to Bernoulli, while Newton presented his solution to
the Royal Society anonymously.1 For the quoted text and a definitive
account of the intellectual history, see Sussmann and Willems [1997].

1Johann Bernoulli ascribes the anonymous solution to Newton because he noted
that “you can tell the lion by its claws” (ex ungue leonem). The solution is the cycloid
curve for the point C whose coordinates (x(t), y(t)) evolve, starting from the point
A at (0,0) at t = 0, according to x(θ) = α(θ − sin(θ)) and y(θ) = α(cos(θ) − 1),
where θ(t) = t

√
g/α, g = 9.8m/sec2, and the parameters (α, T ) are determined by

the terminal condition (x(θ(T )), y(θ(T ))) = B.
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178 Introduction

This event gave birth to the mathematical branch, later known as
the calculus of variation, due to Leonhard Euler, who was Bernoulli’s
student and who discovered what is now called the Euler’s equation
to solve such dynamic optimization problems. Intense mathematical
research over the subsequent three hundred years culminated into the
modern control theory. Consistent with Bernoulli’s prognosis, this the-
ory found use in launching man on Moon, landing Curiosity on Mars,
deploying unmanned drones or designing driverless cars, high preci-
sion manufacturing using robots, providing navigation guidance turn
by turn to users on roads, seas, and air, besides numerous applica-
tions in “other branches of science” including Operations Research (for
example, Berstekas [2005]), Economics (for example, Stokey and Lucas
[1989], Aghion and Howitt [1998], Ljungqvist and Sargent [2004], Weber
[2011], Kamien and Schwartz [2012]), Management Science (for exam-
ple, Sethi and Thompson [2000], Dockner et al. [2000]), and Marketing
(for example, Erickson [2003], Jørgensen and Zaccour [2004]).

In Marketing, the point A represents the current state of the com-
pany’s brand sales or consumer’s utility. The point B marks the desired
state the decision-maker wants to arrive at. The object C is the decision-
maker (for example, CEO, brand managers, consumers), and its use of
own weight denotes the set of actions (for example, price, advertis-
ing, brand choices) available for transitioning the system from state A
to state B. The shortest time specifies the decision-maker’s objectives
(for example, maximize the stream of future profit or utility). In Sec-
tion 2, I clarify the terms state, system, transition, actions (or controls),
and objectives, but note here that this simple abstraction is “splendid”
because it not only unifies diverse problems across many applications,
but also offers a systematic approach for solving them.

The purpose of this primer is to impart this systematic approach
for solving dynamic marketing problems. To pursue this pedagogi-
cal focus, this article does not aim to review dynamic models in the
extant marketing literature, for which readers are referred to Bowman
and Gatignon [2010], Neslin and van Heerde [2009], Shankar [2008],
Hanssens et al. [2003], and Leeflang et al. [2000].

Solving dynamic problems involves two distinct topics: parame-
ter estimation and optimal control. The former refers to describing
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the system of relations among current states, past states, and actions
via econometric time-series models (for example, Pauwels [2004],
Steenkamp et al. [2005]). The latter refers to managing the system
by determining the optimal course of actions to execute over the future
planning horizon (for example, Kumar et al. [2008], Esteban-Bravo
et al. [2014]). The foundation for parameter estimation stands on the
Kalman Filter and the Likelihood Principle, whereas that for optimal
control stands on the Pontryagin’s Maximum Principle and Bellman’s
Principle of Optimality.

This monograph elucidates these four principles and related con-
cepts, focusing on how to estimate dynamic models in Sections 3 and 4,
and how to solve the control problems in Sections 5 and 6. But first,
I clarify the terms, present the diversity of dynamic models, unify
them via the canonical state space model, and highlight the value of
unification.



2
Dynamic Models in Marketing

This section clarifies the terms used in the context of dynamic mod-
els. Then, I illustrate 10 examples of dynamic marketing models (five
discrete-time and five continuous-time). Next, I introduce the state
space formulation, which unifies and nests various dynamic mod-
els: linear and nonlinear, deterministic and stochastic, discrete- and
continuous-time. Finally, I state the main advantages of using state
space form.

2.1 Types of variables

Let me first clarify the meanings of the key terms. A dependent vari-
able, denoted by yt, represents an observed outcome at the instant t (for
example, a brand’s sales level in say January 2015). Whereas a state
variable, denoted by xt or αt, is not observed directly by measurements,
for example, brand’s goodwill [Naik et al., 1998], brand’s equity [Sriram
and Kalwani, 2007, Sriram et al., 2007], consumer’s utility and prefer-
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2.1. Types of variables 181

ences [Lachaab et al., 2006, Teixeira et al., 2010], consumer’s interest
and conversion [Hu et al., 2014]. But it affects the dependent variable
and is affected by a control variable and/or an independent variable.
For instance, a brand’s goodwill is a state variable that is not directly
measured by the company, but it affects the prevailing level of brand
sales (an observed dependent variable), and is affected by the brand’s
advertising (a control variable) and regional seasonality (an indepen-
dent variable). The concept of state variable is quite broad and context
dependent — besides conceptual marketing variables (for example, cog-
nition, affect, experience), even a model’s parameter to be estimated
or a random error term itself (not just its variance) can be a state
variable.

A control variable, denoted by ut, is a decision variable such as the
level of ad spending and/or brand’s price determined by a decision-
maker. In other words, a marketing manager decides ad spending or
price to achieve a certain objective of maximizing profit, for example.
In contrast, an independent variable, also known as an exogenous vari-
able or a covariate, is deemed to be pre-determined or not chosen by
the decision-maker in a systematic way. This distinction between con-
trol and independent variables matters because we want to not only
describe the dynamic system, but also manage it to achieve certain
objectives.

In sum, a manager decides the values of a control variable (that is,
an endogenous variable), which drives the state variable, which in turn
affects the observed dependent variable; independent variables are not
decision variables but they influence the state and/or dependent vari-
ables. Indeed, multiple outcomes (for example, own and competitor’s
sales), multiple states (for example, goodwill, ad effectiveness), multi-
ple controls (for example, advertising, price), and multiple covariates
(for example, seasonality, inflation) are present in a market place. A set
of equations relating such variables is called a dynamic system.

Table 2.1 provides a glossary of various variables to be encountered
in this monograph.
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Table 2.1: Various variables!

Term Meaning
Adjoint variable See costate variable.
Continuous variable A variable that lives on a real number line or its

segment. For example, probability of purchase
lives on a positive unit interval and potentially
takes all fractional values. See discrete variable.

Control variable A trajectory of the decision variable over time (that
is, {x∗t : t = 1, . . . , T}) or a function of state
variable (that is, x∗t = f(αt)). It is often denoted
by u or v in the presence of independent
variables, which are nondecision variables and
denoted by x. See decision variable,
pre-determined variable.

Costate variable A variable, denoted by λt or µt, associated with
each state variable. It captures the “shadow
price” of marginal relaxation of the dynamic state
constraint. It is a dynamic analog of the Lagrange
multiplier in the static optimization theory.

Covariates See independent variable, pre-determined variable,
regressors.

Decision variable A variable that affects the objective function (for
example, brand profit or consumer utility), and a
decision-maker seeks to know its “best” value
that attains the objective. Suppose advertising
expenditure or brand’s price x affects brand
profit Π(x); then x is the decision variable, and
x∗ = Arg Max Π(x) is the best value. See control
variable, pre-determined variable.

Dependent variable A variable that depends on independent variables
or regressors, denoted usually by y. See outcome
variable.

Discrete variable A variable that takes the integer values on a real
number line or its segment. For example, weeks of
the year live on the index set {1, 2, . . . , 52, . . .}.
See continuous variable.

Drift variable A variable that shifts the state vector or its
observation and denoted by ct or dt in state space
models.

Endogenous variable See dependent variable.
(Continued)
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Table 2.1: (Continued)

Term Meaning
Exogenous variable See independent variable, pre-determined variable,

and regressors.
Filtered variable A current mean of an outcome (or state) variable

based on the current information set. That is,
ŷt = E[yt|It]. See forecasted variable, smoothed
variable.

Forecasted variable A future mean of an outcome (or state) variable
based on the current information set. That is,
ŷt+h = E[yt+h|It], where h is the forecast
horizon. See filtered variable, smoothed variable.

Independent variable A variable that does not depend on the outcome or
dependent variable, denoted usually by x. In
other words, xt is not a function of yt. It can be a
pre-determined variable based on past
(xt−k, yt−k) where k ≥ 1. A set of independent
variables need not be, and often are not,
statistically independent of each other. See
regressors, pre-determined variable.

Instrumental variable An instrumental variable z allows one to estimate
unbiased β̂ = (z′x)−1(z′y) when (x, ε) are
correlated in the scalar regression model
y = βx+ ε, where ε is an error term. When (x, ε)
are uncorrelated, the ordinary least squares
β̂ = (x′x)−1(x′y) yields the unbiased estimates.

Interaction variable Consider a linear model, y = βx+ γz + αxz. Then
(x, z) are interacting variables, (β, γ) are their
simple effects respectively, and α is the
interaction effect. Also dy

dx = β + αz, so see
moderating variable, and synergistic variable.

Intermediate variable See mediating variable.
Lag variable A variable whose past values affect the current

outcome. For example, yt = f(xt−1). Also x can
be y itself.

Latent variable A theoretical construct not directly observable: one
observes its effects but not itself. It is
operationalized via multiple proxy variables. For
examples: goodwill in marketing, inflation in
economics, or latent heat in physics.

(Continued)
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Table 2.1: (Continued)

Term Meaning
Lead variable A variable whose future values affect the current

outcome. For example, yt = f(xt+1). Also x can
be y itself. It is incorrect to simply include future
values as regressors directly to predict current y.
A proper treatment requires using the expectation
of future values based on current information set,
that is, yt = f(E[xt+1|It]). The quantity
E[xt+1|It] is the prior mean, and it is readily
available from the Kalman filter recursions.

Markovian variable A variable whose future values depend only on the
current values. The “current” period can be
augmented to include contiguous past periods.
For example, if future depends on past two days,
then the “current” state includes today and
yesterday. The main point is that the limited past
predicts the future; that is, the distant past is
irrelevant. Although used in the context of
random variables, this concept applies to
deterministic variables as well (for example,
differential equations).

Mediating variable Suppose x→ z → y. Then z is the mediating
variable. For example, advertising drives
awareness that drives liking that drives sales,
then the effect of advertising on sales is mediated
by awareness and liking, which are mediating
variables. See moderating variable as it differs
from mediating variable.

Moderating variable A variable that influences the simple effect of other
variables. Suppose x affects y. Then β = dy/dx is
the simple effect of x on y. A variable z is a
moderating variable iff dy

dx = β + αz, where α is
the magnitude of the moderating effect of z on
the x→ y effect. See interaction variable and
synergistic variable, which are both moderating
variables. Also see mediating variable as it differs
from moderating variable.

Non-Markovian
variable

Its future value depends on the distant past values.
See Markovian variable.

Observed variable A variable with known values.
(Continued)
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Table 2.1: (Continued)

Term Meaning
Outcome variable A “variable of interest” in scientific investigations

(like the person of interest in police
investigations). Also see dependent variable.

Pre-determined
variable

A variable whose values are committed in advance.
For example, television spots are purchased in the
upfront market about 12–18 months in advance.
The advertised brand gets to buy the spots at
discounted prices, and the networks get to raise
dollars needed to fund the creation of program
content.

Proxy variable A variable reflected by the latent variable. See
unobserved variable and latent variable.

Random variable A misnomer: in a random variable, there is nothing
random, and it is not even a variable. A random
variable maps an event space (that is, set of
events) to a segment of the real line (that is, a
Borel set). Hence, random variable is a set-valued
deterministic function.

Regressors A set of variables included in regression models to
explain the variation in a dependent variable or
predict the mean of a dependent variable. See
independent variable.

Smoothed variable A past mean of an outcome (or state) variable
based on the future, current, and past
information set. That is, ŷt|N = E[yt|IN ]), where
N > t. See filtered variable, smoothed variable.

State variable A variable that is an element of the state vector,
which reflects the state of the dynamic system
denoted by αt in state space models. It can be (1)
an unobserved variable (for example,
competitor’s market share), (2) latent variable
(for example, goodwill or affect), (3) unknown
model parameters (for example, as in
random-walk models), (4) the error terms (for
example, as in AR, MA models), (5) variances of
the error terms (for example, ARCH, GARCH
models), or whatever you want it to be (for
example, heterogeneity in parameters via
hierarchical linear models).

(Continued)
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Table 2.1: (Continued)

Term Meaning
Synergistic variable A variable that influences an outcome both directly

by itself and indirectly by reinforcing other
variables. For example, TV advertising directly
increases sales, and it indirectly enhances the
effects of online advertising by driving the
website traffic, search, and engagement. Also see
moderating variable.

Transformed variable Another variable created from a given variable. For
example, in the transformation y = f(x), y is the
transformed variable and x is the given variable.

Unobserved variable A variable that is not directly observable. It can be
a concrete variable with unavailable data (for
example, tracking competitor’s market share or
altitude measurements of an airplane when
tracking its position using radar) or an abstract
construct (that is, a latent variable). In the latter
case, observed variables serve as the fallible
proxies for the unobserved variable. For example,
goodwill or affect is not directly observed, but a
survey of respondents furnishes measures such as
brand awareness to serve as the proxy for
goodwill or liking as the proxy for affect. Also see
latent variable and state variable.

Variable A variable is a function of an index such as time,
household, brand, or city. For example, the
number of units sold varies from week to week,
creating the variable “sales” over time.

2.2 Diversity of dynamic models

2.2.1 Autoregressive models

The most commonly used dynamic marketing model is a first-order
autoregressive model given by

At = λAt−1 + βut + νt, νt ∼ N(0, σ2
ν) (2.1)
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where At denotes awareness at time t, ut is the advertising spending,
νt is the random error that perturbs the awareness level due to myriad
factors not explicitly included in the model. The parameters β and λ
denote ad effectiveness and carryover effect, respectively. The change
in awareness ∇At = At − At−1 = βut − (1 − λ)At−1 + νt shows that
awareness grows due to advertising, while it wanes in the absence of
advertising (ut = 0) at the rate (1− λ).

If managers measure awareness for its brand each week, then the
ordinary least squares (OLS) can estimate Equation (2.1) to obtain
the estimates of (β, λ, σ2

ν). However, awareness is measured by survey-
ing a sample of customers, so it is likely error-prone, which can be
expressed as

Yt = At + εt, εt ∼ N(0, σ2
ε). (2.2)

In Equations (2.1) and (2.2), Yt, At, and ut denote the observed depen-
dent variable, the unobserved state variable, and an independent vari-
able, respectively. If we apply OLS to the observed data (Yt, ut), the
resulting estimates will be biased due to the presence of measure-
ment errors σ2

ε . To examine this assertion, Naik et al. [2007] conduct
simulation studies and report that, across low to high noise levels,
ad effectiveness is over-estimated by 34–147% and carryover effect is
underestimated by about 48%. Then they show how to obtain unbiased
estimates, which involve controlling for measurement noise in aware-
ness metric and estimating the dynamic model (2.1) simultaneously by
using the Kalman filter, which will be described in the next section.

2.2.2 Time-varying parameters models

The ad effectiveness β itself may vary over time. For example, Naik
et al. [1998] show that ad effectiveness wears out over the span of con-
tinued advertising and restores during the span of hiatus in advertising.
Although Naik et al. [1998] incorporate behavioral insights to formulate
and estimate the time-varying ad effectiveness, let us instead consider
a simpler random walk model:

βt = βt−1 + νt, νt ∼ N(0, σ2
ν). (2.3)



188 Dynamic Models in Marketing

Equation (2.3) offers a parsimonious model to capture nonmonotonic
variations over time (see Vakratsas and Kolsarici [2008] and Bruce et al.
[2012a]).

Alternatively, we specify a smooth cubic spline by letting the
second-order variation to be of small magnitude. Specifically, let
∇2βt = νt, where ∇2βt = ∇∇βt= ∇(βt − βt−1) = ∇βt − ∇βt−1 =
(βt−βt−1)− (βt−1−βt−2) = βt− 2βt−1 +βt−2. Then, we get the cubic
spline model: [

βt
βt−1

]
=
[
2 −1
1 0

] [
βt−1
βt−2

]
+
[
νt
0

]
. (2.4)

The second row appends an identity (βt−1 = βt−1), which allows us
to represent the scalar second-order lag model as the vector first-order
lag model, whose benefit will become apparent when I introduce the
unifying state space form in Section 2.3. In addition, Equation (2.4)
offers a simple way to impute missing values in time-series data; for
this application, see Biyalogorsky and Naik [2003].

Finally, if we know the pattern of time-variation based on a theory,
for example, periodic variation in ad effectiveness as in Naik et al. [1998]
would be β(t) = 1+cos(t), then we express it as ∂2β

∂t2 = − cos(t) = 1−β,
which implies in discrete-time ∇2βt = 1− βt−1 to get[

βt
βt−1

]
=
[
1 −1
1 0

] [
βt−1
βt−2

]
+
[
1
0

]
+
[
νt
0

]
. (2.5)

Equation (2.5) is also linear in the state vector (βt, βt−1)′ with only a
first-order lag, revealing that higher-order lag terms can be represented
equivalently as a first-order lag model in an augmented vector space.

2.2.3 VAR models

Many marketing researchers study the impact of control and inde-
pendent variables on multiple dependent variables simultaneously (for
example, see the review article by Dekimpe et al. [2008]). Vector Auto
Regressive (VAR) models describe the market response function by
combining customer response, competitive reaction, and firm decision
rules. When the dynamic system includes exogenous variables, we call
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it the VAR-X model, where X indicates exogenous independent vari-
ables. The VAR-X model is the vector generalization of Equation (2.1),
and is represented by



Y1t
Y2t

...

Ynt


= [φij ]



Y1t−1
Y2t−1

...

Yn,t−1


+ [βij ]



X1t
X2t

...

Xk,t


+



ε1t
ε2t

...

εnt


. (2.6)

The elements in the n×nmatrix Φ = {φij} and those in the n×k matrix
B = {βij} are estimated using market data, along with the variances
of the error terms εi and the covariances between all pairs of (εi, εj).
Equation (2.6) is also linear in the state vector Yt = (Y1t, . . . , Ynt)′ with
a first-order lag in the vector space. The vector Yt includes multiple
dependent variables such as awareness, liking, sales, prices, promotions,
ad spends, distribution coverage, and distribution intensity.

In VAR-X models, all dependent variables must be observed at
every instant. In contrast, for example, in the context of online reverse
auctions in industrial markets, only one bidder submits a price quote
at a time, while all other bidders do not bid. Different bidders sub-
mit price bids at different instants. In other words, at each t, only
one element of the vector Yt is observed, while all its other elements
are not observed. To describe such dynamics, Jap and Naik [2008]
develop Partially Observed VAR model, and they apply the Kalman
filter to infer the willingness to pay of all the bidders at all the
instants even when their bids were not submitted at each instant. Other
extensions of VAR models include higher-order lags to get VAR(p)
models with p lag terms or time-varying parameters (TVP) via Equa-
tions (2.3)–(2.5) to get TVP-VAR models (for such applications, see
Section 4 of Koop and Korobilis [2009]). All higher-order VAR models
can be expressed equivalently as first-order models in an augmented
vector space (for example, by applying the ideas used in arriving at
Equation (2.5)).
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2.2.4 VARMAX models

The error terms in VAR-X models, namely εt = (ε1t, . . . , εnt)′ in Equa-
tion (2.6) are assumed uncorrelated over time. To be clear, they are
correlated amongst themselves, but temporally independent. To relax
this assumption, let the error terms in Equation (2.6) exhibit one-period
moving average or MA(1) process as follows:

ε1t
ε2t
...
εnt

 =


ν1t
ν2t
...
νnt

+ [θij ]


ν1t−1
ν2t−1
...

νn,t−1

, (2.7)

where the n×n matrix Θ = {θij} contains parameters to be estimated,
and νt = (ν1t, . . . , νnt)′ follows multivariate normal with zero mean and
finite covariance matrix.

Then we augment the VAR model in (2.6) with Equation (2.7) to
get VARMAX model. Other extensions of VARMAX models include
higher-order lags in error terms to get MA(q) models with q lag terms
(instead of q = 1 in Equation (2.7)) or the integrated time-series to
get ARIMAX models (for this specification, see section 3.3 of Durbin
and Koopman [2012]). All such higher-order VARMAX models also can
be expressed equivalently as first-order models in an augmented vector
space.

2.2.5 Dynamic factor models

Past research on how advertising works [Lavidge and Steiner, 1961,
Vaughn, 1980, 1986, Barry and Howard, 1990, Vakratsas and Ambler,
1999] suggests that advertisements nudge consumers along the think–
feel–do hierarchy to induce sales. Such intermediate effects — cognition
(C), affect (A), and experience (E) — are unobservable constructs.
While many market response models explain how advertising grows
sales, they ignore the role of intermediate effects in building brands. To
introduce the dual roles of advertising to boost sales and build brands,
Bruce et al. [2012b] formulate a dynamic factor model of advertising.
The classical hierarchy of effects suggests that advertising triggers one
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of the three intermediate factors to initiate the sequence, and the last
in the sequence drives sales.

Classical hierarchical E → C → A
Ct
At
Et
St

 =


0 0 γ13 0
γ21 0 0 0
0 0 0 0
0 γ42 0 0



Ct−1
At−1
Et−1
St−1

+


0
0

β3g (ut)
0

+


w1t
w2t
w3t
w4t

. (2.8)

Consider Equation (2.8) in the context of the E → C → A hier-
archy, for example. Advertising effect (β3) triggers the experience Et,
then the prior experience Et−1 influences the current cognition Ct (via
γ13), the prior cognition Ct−1 drives the current affect At (via γ21),
and the prior affect At−1 induces brand sales St (via γ42). The error
terms (w1t, w2t, w3t, w4t)′ ∼ N(0,W ) represent the specification errors
in the three factor and brand sales equations. The function g(u) =

√
u

captures the diminishing returns to advertising. Other permutations of
experience, cognition, and affect can be empirically tested to discover
the operating sequence (see Bruce et al. [2012a]).

In contrast, Vakratsas and Ambler [1999] suggest that advertising
ignites all three factors simultaneously via (β1, β2, β3)′ then all three
factors jointly drive sales via γ41, γ42, γ43 and brand purchases reinforce
experience through γ34. Equation (2.9) describes this process.

Vakratsas–Ambler model
Ct
At
Et
St

 =


0 0 0 0
0 0 0 0
0 0 0 γ34
γ41 γ42 γ43 0



Ct−1
At−1
Et−1
St−1

+


β1g(ut)
β2g(ut)
β3g(ut)

0

+


w1t
w2t
w3t
w4t

. (2.9)

For both these views, advertising does not grow sales directly (that
is, β4 = 0), but only indirectly via the intermediate factors. Hence,
the classical hierarchy-of-effects literature presents the “pure” brand-
building view of advertising. More importantly, the classical hierarchies
and the Vakratsas–Ambler model ignore the dynamic effects (that is,
γii = 0).

Hence, Bruce et al. [2012a] integrate the elements of the dynamic
sales response model (that is, sales dynamics via γ44 and advertising
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effect via β4), the classical hierarchy models, and the Vakratsas–Ambler
model. In addition, they extend the marketing literature by incorpo-
rating:

(i) Intermediate factor dynamics (γ11 6= 0; γ22 6= 0; γ33 6= 0; γ44 6=
0). Like sales carryover effect, current cognition carries over into
future periods with a weekly attrition rate (1 − γ11). Similarly,
γ22 and γ33 capture affect and experience dynamics, respectively.

(ii) Purchase reinforcement (γ14 6= 0; γ24 6= 0; γ34 6= 0). For example,
γ34 measures the purchase reinforcement of current experience
due to the link S → E, as Vakratsas and Ambler [1999] hypoth-
esized. Additionally, they hypothesize the presence of purchase
reinforcements on cognition (γ14) and affect (γ24).

(iii) Advertising grows sales and builds brands simultaneously (β1 6=
0; β2 6= 0;β3 6= 0; β4 6= 0) The parameters (β1, β2, β3, β4)′
measure the effects of advertising GRPs on all three interme-
diate factors and brand sales. The first three advertising effects
(β1, β2, β3)′ ignite all intermediate factors to build brand values;
also advertising effect (β4) grows sales volume directly. Together,
brand values and sales volume create the intangible and tangible
effects of advertising, respectively.

They refer to this augmented model as the Integrated Hierarchy of
advertising. Equation (2.10) shows the integrated E → C → A hierar-
chy.

Integrated E → C → A hierarchy
Ct
At
Et
St

 =


γ11 0 γ13 γ14
γ21 γ22 0 γ24
0 0 γ33 γ34
0 γ42 0 γ44



Ct−1
At−1
Et−1
St−1

+


β1g(ut)
β2g(ut)
β3g(ut)
β4g(ut)

+


w1t
w2t
w3t
w4t

. (2.10)

To link the factor dynamics to observed metrics, they measure a
battery of n mindset metrics in each week t, denoted by xit, along with
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the observed sales volume yt with the mean sales level St as follows:



x1t
x2t

xjt

xj′t

xnt
yt


=



1 0 0 0
λ21 λ22 λ23 0
...

...
...

...
0 1 0 0

...
0 0 1 0

...
λn,1 λn,2 λn,3 0
0 0 0 1




Ct
At
Et
St

+



ε1t
ε2t
...

εnt
εn+1,t


, (2.11)

where the four rows have only ones and zeros for identification and
naming of the factors. Specifically, one of the items for each of the
factors (x1t for Ct, xjt for At, xj′t for Et, yt for St), usually prototypical
variables that unambiguously justify the naming of that factor, serves
the purpose of identification, which is achieved by setting unity for
corresponding named factor and zeros for other factors (as shown in
Equation (2.11)).

Furthermore, if a factor (Ct, At, Et) reflects a measurement item
(xit) then it gets a nonzero loading coefficient (λij) to be estimated
using data. The link matrix in (2.11) permits both the confirmatory
factor analysis (that is, known link matrix) and the exploratory fac-
tor analysis (that is, unknown link matrix). If factor composition is
known, then the values of λ are set according to this knowledge (with
zeros for items that do no belong to the factor). If factor composition is
unknown, then all the values of λ are estimated (except for the identify-
ing restrictions via the unit row vectors) and significance testing guides
the inference on the most probable factor structure that corroborates
with market data.

The vector of εt denotes measurement errors in the metrics, which
serve as fallible proxies for the unobserved factors. This dynamic factor
model can be estimated via the Kalman filter–smoother algorithms (see
Bruce et al. [2012b], Du and Kamakura [2015], Rutz and Sonnier [2011],
and Hasegawa et al. [2012]).
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The next five models are formulated in continuous time, where the
instant t marches along the positive real line [0,∞) rather than in the
discrete index set 1, 2, . . . , T as in the preceding models.

2.2.6 Nerlove-Arrow model

To obtain the continuous-time version of Equation (2.1), consider its
deterministic part, At = λAt−1+βut, which equals At−At−1 = λAt−1−
At−1 +βut, which can be expressed as ∇At = −(1−λ)At−1 +βut and,
upon taking limits as the interval between the two time points vanish,
we obtain the classical Nerlove and Arrow [1962] model:

dA(t)/dt = −δA(t) + βu(t) (2.12)

where δ = (1− λ) denotes the forgetting rate. Equation (2.12) clarifies
the meaning of Equation (2.1). Specifically, awareness decays in the
absence of advertising (that is, u(t) = 0) and grows due to advertising
over time. In what follows, I suppress the time argument in the variables
for brevity when its presence is apparent from the context (for example,
dA/dt = −δA + βu); parameters are constant over time unless stated
otherwise. Mahajan et al. [1984] review this model and its variations
in the context of awareness formation of new products.

We can augment the above model to incorporate multiple media.
When managers use multi-media communications, the combined effect
exceeds the sum of individual effects due to synergies. To incorporate
synergies in Equation (2.12), Naik and Raman [2003] formulate the
Integrated Marketing Communications (IMC) model as follows:

dA(t)/dt = −δA(t) + β1u(t) + β2v(t) + κu(t)× v(t), (2.13)

where (β1, β2) denote the effectiveness of the two advertising media
(u, v) respectively, and κ measures the synergy between them (that is,
the joint impact of online and offline advertising, for instance, over and
beyond their direct effects via (β1, β2)).

To understand the synergy effect, imagine κ increases marginally
from zero to a finite number. We can rearrange the right-hand side
of (2.13) as follows: −δA+ (β1 + 0.5κv)u+ (β2 + 0.5κu)v. Then we see
that the effectiveness of u increases from β1 to (β1+0.5κv) and that for
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v increases from β2 to (β2 + 0.5κu). Thus the IMC model captures the
essence of synergy: each advertising medium not only increases aware-
ness directly, but also enhances the effectiveness of the other medium
indirectly. In Section 6.1, I will explain how to solve the associated
control problem to not only derive the optimal budget allocation, but
also discover a counter-intuitive result that managers should allocate
more than fair share to the less effective medium.

If we considered both the deterministic and random terms in Equa-
tion (2.1), then the Nerlove–Arrow model becomes

dA(t) = (−δA(t) + βu(t))dt+ σνdW (t), (2.14)

where W (t) denotes the standard Wiener process, which is also known
as the Brownian motion that generalizes the discrete-time random walk
model (that is, Equation (2.3)) to continuous-time. Consistent with
the role of random errors in Equation (2.1), the increment in random
Wiener process, dW (t), perturbs the awareness dynamics due to myr-
iad factors not explicitly included in the model. This perturbation cap-
tures the dynamic uncertainty and is normally distributed with mean
zero and variance σ2

ν at each instant t. This Wiener increment dW
is analogous to the normal error term in time series models. W (t) is
a continuous function of time at every instant although not differen-
tiable at any instant. Hence the standard calculus does not apply, and
Ito’s stochastic calculus becomes necessary to analyze models as in
Equation (2.14). For such analyses, see Raman and Naik [2004] who
incorporate dynamic uncertainty in the IMC model and investigate
its effects on the optimal allocation and brand profit. In Section 6, I
will explain how to solve the stochastic control problems. (To learn
about Brownian motion and Ito’s calculus, Jazwinski [1970], Malliaris
and Brock [1982], and Grigoriu [2002] provide a gentle introduction to
those advanced subjects.)

2.2.7 Vidale–Wolfe model

One of the earliest known continuous-time sales-advertising model, due
to Vidale and Wolfe [1957], is given by

dS(t)/dt = βu(t)[M(t)− S(t)]− δS(t), (2.15)
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where (S, M) denote brand sales and market size. Equation (2.15) says
that the growth in brand sales decreases proportional to the sales level
at the rate δ in the absence of advertising, whereas advertising influ-
ences the untapped market (M − S) to generate sales growth.

This model has been used extensively to investigate whether brand
managers should use “pulsing” advertising strategy, that is, advertise
for a few weeks, then stop advertising for a few weeks, and repeat this
pattern over time (see, for example, Sasieni [1971], Sethi [1977], Maha-
jan and Muller [1986], Park and Hahn [1991], Feinberg [1992], Mesak
[1992], Bronnenberg [1998], Naik et al. [1998], Feinberg [2001], Freimer
and Horsky [2012]). Because I do not analyze this model in Section 6,
I refer the readers to Sethi [1977], who fully characterizes the optimal
advertising strategy for Vidale–Wolfe model. His results reveal that
pulsing is not the optimal strategy. Moreover, Feinberg [2001] proves
that the optimal pulsing does not arise in a broad class of models with
sales growth dS/dt = g(u)f(S) − δS, where the advertising response
function g(u) can exhibit diminishing returns or an S-shaped threshold
like behavior.

Besides the pulsing literature, Vidale–Wolfe model has found appli-
cations in analyzing competitive markets because of its property of log-
ical consistency (see, for example, Chintagunta and Vilcassim [1992],
Fruchter and Kalish [1997], Fruchter [1999], Naik et al. [2005]). To
understand this property, let us normalize the market size to unity so
that Equation (2.15) becomes ẋ = dx/dt = βu(1 − x) − δx, where x
denotes market share. When a competing brand advertises, the focal
brand loses its share at a faster rate. To incorporate this effect, let the
brand’s attrition rate δ be proportional to the competitor’s advertis-
ing, that is, δ1 = β2u2, where the subscripts refer to the two competing
brands. Then, the dynamic competition for market shares is given by
the coupled differential equations:

dx1(t)/dt = β1u1(t)(1− x1(t))− β2u2(t)x1(t),

dx2(t)/dt = β2u2(t)(1− x2(t))− β1u1(t)x2(t).
(2.16)

Summing the left-hand sides, we get dx1/dt + dx2/dt = d(x1 + x2)/
dt = 0 because x1(t) + x2(t) = 1 for every instant t ∈ [0,∞). Summing
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the right-hand sides, we get [β1u1(1− x1)− β2u2x1] + [β2u2(1− x2)−
β1u1x2] = β1u1−(β1u1+β2u2)x1+β2u2−(β1u1+β2u2)x2 = F (1−x1−
x2), where F (t) = β1u1(t)+β2u2(t) denotes the marketing force at time
t. Then, for any nonzero function F (t) the right- hand side equals equals
zero because x1(t) +x2(t) = 1, guaranteeing the logical constraint that
the shares sum to unity. This property, known as the logical consistency,
does not hold for many models (for example, consider extending the
Nerlove–Arrow model for two competing brands).

All models thus far are linear in the state variables; the final three
are nonlinear dynamic models.

2.2.8 Bass model

Bass [1969] describes how new product categories, innovations, or tech-
nologies diffuse over time, and it is one of the 10 most cited papers in
the 50-year history of Management Science. The model incorporates
the interaction between the buyers and the untapped market, due to
word of mouth effects, and is specified by the differential equation:

dN(t)
dt

=
(
p+ q

M
N(t)

)
(M −N(t)), (2.17)

where N(t) is the cumulative number of buyers up to time t, and
(p, q) are the coefficients of innovation and imitation, respectively. By
expanding the right- hand side, we observe that the first term repre-
sents the effect of untapped market as in Vidale–Wolfe model, and the
second term, N×(M−N) captures the interaction between the buyers
and the untapped market. The presence of an interaction term renders
the model nonlinear in the state variable N .

Because the Bass model does not contain decision variables, Bass
et al. [1994] propose the Generalized Bass model:

dN(t)
dt

=
(
p+ q

M
N(t)

)
(M −N(t))F (t), (2.18)

where F (t) denotes the marketing force due to a brand’s advertising or
price inputs. By assuming F (t) = 1− α{[(ṗ(t)/p(t))] + β[(ȧ(t)/a(t))]},
where ż = dz/dt, (p, a) are price and advertising inputs, (α, β) are
the sensitivity parameters, Fruchter and Van den Bulte [2011] solve
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the induced control problem and show that the optimal advertising
increases monotonically over time (even in the presence of decreasing
prices). This monotonicity result holds for all first-order dynamic mod-
els with a single state variable regardless of the nature of dynamics [as
shown more generally by Hartl, 1987], unless delayed state variables
drive the dynamics [as shown more recently by Aravindakshan and
Naik, 2015].

2.2.9 Sethi model

Sethi [1983] parsimoniously combines both the roles of untapped mar-
ket and the interaction effect via the differential equation:

dS(t)
dt

= βu(t)
√
M − S(t)− δS(t), (2.19)

where the square root introduces nonlinearity in the state variable. To
interpret the square root term, let us denote the market penetration
by S/M = x and then normalize the market size to unity. Conse-
quently, Equation (2.19) becomes dx/dt = βu(t)

√
1− x − δx. Sorger

[1989] shows that
√

1− x ≈ (1−x) +x(1−x). Also see Erickson [2003,
p. 24]. The first term (1− x) represents the untapped market, and the
second term x(1 − x) captures the interaction effect due to word of
mouth.

As Section 6 will show, this square root formulation facilitates the
derivation of closed-form analytical solutions to the deterministic con-
trol problem, stochastic control problem, and competitive differential
games. For example, Prasad and Sethi [2009] extend this model to the
IMC context, which is given by

dx(t)
dt

= F (t)
√

1− x (t)− δx(t)

F (t) = β1u+ β2v + κ
√
u× v,

(2.20)

where F (t) represents the force of marketing communications due to
the two interactive media (u(t), v(t)) that increases both the market
penetration and word of mouth effects embodied in

√
1− x. Prasad

and Sethi [2009] derive the optimal closed-loop allocation, which pro-
vides the optimal decision rule to spend on each medium based on the
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prevailing level of x(t). More importantly, they show that managers
should allocate more than fair share of the total spending to the less
effective medium as synergy increases. This result generalizes Naik and
Raman’s [2003] result to a different dynamic specification, reassuring
us that the inverse allocation arises not due to the choice of model
dynamics, but due to the super additivity of marketing communica-
tions.

2.2.10 N-brand dynamic oligopoly model

Similar to Equation (2.16), which extends the Vidale–Wolfe model
to duopoly markets, Sorger [1989] extends the Sethi [1983] model
to duopoly markets. The resulting model satisfies the logical consis-
tency property. Chintagunta and Vilcassim [1992] and Chintagunta and
Jain [1995] furnish empirical support for Sorger’s model. Naik et al.
[2008] further extend Sorger’s formulation to incorporate competition
amongst N brands to build awareness Ai(t) as follows:

dAi(t)
dt

= βiui(t)
√
M(t)−Ai(t)︸ ︷︷ ︸

Gain due to own action

− ΣN
j=1,j 6=iαijuj(t)

√
M(t)−Aj(t)︸ ︷︷ ︸

Loss or gain from others’ actions

, i = {1, 2, . . . , N},

(2.21)
where βi is the effectiveness of own action ui, αij is the effectiveness
of jth brand’s action uj on brand i. Equation (2.21) says that a
focal brand’s advertising ui(t) builds its awareness, while other brands’
advertising uj(t) may detract it from achieving its awareness growth
when αij > 0. However, if αij < 0, then brand j’s advertising (for
example, comparative advertisements) creates confusion in consumers’
minds and increases awareness of the focal brand. Besides such confu-
sion effects, we get market expansion ifM(t) grows over time. Finally, if
logical consistency is necessary (for example, when using market share
data), researchers can set αij = βj/(N − 1) and M = 1 to ensure∑N
i=1Ai(t) = 1 for every t.
Naik et al. [2008] design an extended Kalman filter (EKF) to

estimate this N -brand dynamic oligopoly model using market data for
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five car brands over time. In addition, for any feasible parameter value
(that is, not just the estimated parameters), they derive the optimal
closed-loop Nash equilibrium strategies for every brand. The empir-
ical results furnish strong support for the proposed model in terms
of both goodness-of-fit in the estimation sample and cross-validation
in the out-of-sample data. More importantly, the estimation method
offers managers a systematic way to estimate ad effectiveness and fore-
cast awareness levels for their particular brands as well as competitors’
brands. Most importantly, the analytical solution to the associated con-
trol problem reveals — contrary to the proportional-to-sales or com-
petitive parity heuristics — the counter-intuitive insight: large (small)
brands should advertise proportionally less (more) than small (large)
brand’s advertising.

2.3 Unifying framework: state space models

All Markovian dynamic models are unified within the state space form.
To illustrate this point, I present the linear state space model:

Observation equation : Yt = Ztαt + ct + εt, εt ∼ N(0, Ht)
(2.22)

Transition equation : αt = Ttαt−1 + dt + νt, νt ∼ N(0, Qt)
(2.23)

Equation (2.23) is called the transition equation, which represents
the dynamics of the state vector αt. Equation (2.22) is known as the
observation equation, which connects the state vector αt to the obser-
vation vector Yt. The number of observed variables in Yt and those in
the state vector αt need not be the same. Hence the link matrix Zt
is rectangular in general. Let m denote the number of observed vari-
ables, and n be the number of unobserved state variables. Then the
various vectors and matrices in (2.22) and (2.23) have the names and
dimensions as given in Table 2.2.

In principle, all vectors and matrices in (2.22) and (2.23) can vary
over time as direct functions of time or through covariatesXt or via past
observations Yt−1. For example, covariates can enter via the observation
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Table 2.2: Names and dimensions for vectors and matrices in state space models.

Vector or
Notation matrix Name Dimension
Y Vector Observation vector m × 1
α Vector State vector n × 1
T Matrix Transition matrix n × n
T (α) Vector-

valued
function

Transition function n × 1
outputs; n
× 1
arguments

c Vector Drift vector (in observation) m × 1
d Vector Drift vector (in transition) n × 1
Z Matrix Link matrix (from state to

observation)
m × n

ε Vector Observation errors m × 1
ν Vector Transition errors n × 1
H Matrix Observation noise matrix m × m
Q Matrix Transition noise matrix n × n

drift ct = Xtγ or heteroscadesticity Ht = exp(Xtγ). Or we formulate
conditionally Gaussian models by specifying the elements of link or
transition matrices (Z, T ) to depend on past observations; that is,
Tij = g(Yt−1). Furthermore, when we generalize the link and transi-
tion matrices to the link and transition functions, respectively, we get
the nonlinear state space model:

Observation equation : Yt = Zt(αt) + ct + εt, εt ∼ N(0, Ht)
(2.24)

Transition equation : αt = Tt(αt−1) + dt + νt, νt ∼ N(0, Qt)
(2.25)

If necessary, we can further generalize the above nonlinear state space
model by specifying the observation equation via Yt = Zt(αt, ct, εt),
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state transition via αt = Tt(αt−1, dt, νt), and the error terms εt ∼
WS(0, Ht) and νt ∼ WS(0, Qt). That is, the arguments need not be
additively separable nor the error terms normally distributed. The dis-
tribution WS(·) stands for a “wide-sense” distribution with finite sec-
ond moments (H, Q) and its density exhibits any shape (that is, need
not be symmetrical or Gaussian).

Similar to the above discrete-time state space models, we can spec-
ify their continuous-time versions. For example, consider the determin-
istic part of (2.23); then its continuous-time linear state transition is
given by

dα(t)
dt

= T (t)α(t) +B(t)u(t), (2.26)

where α(t) is a n dimensional state vector, u(t) is k dimensional vec-
tor of controls or covariates, and (T, B) are time-varying conformable
matrices. The unobserved state vector connects to the observations via
Equation (2.22). The term d(t) = B(t)u(t) represents the drift vec-
tor. In case we need to incorporate continuous-time uncertainty, we
extend Equation (2.26) as dα = [T (t)α(t) + B(t)u(t)]dt + Q(t)1/2dW ,
where the vectorW (t) contains n standard Wiener process, and Q(t)1/2

represents the Cholesky factor of Q(t). Accordingly, we obtain further
nonlinear extensions.

The above state space forms subsume or nest diverse time-series
models. To exemplify this claim, I will cast one discrete-time TVP
model given by Equations (2.1)–(2.3) into state space form (2.22)
and (2.23) and one continuous-time Vidale–Wolfe model given by Equa-
tion (2.15) into state space form (2.26).

Consider first the time-varying parameter model specified by Equa-
tions (2.1)–(2.3). Equation (2.2) is the observation equation, which is
scalar, with Z = (1, 0) as a row vector, αt = (At, βt)′ as a column
vector, ct = 0, and Ht = σ2

ε . Equations (2.1) and (2.3) form a system
of equations as follows:[

At
βt

]
=
[
λ 0
0 1

] [
At−1
βt−1

]
+
[
βtut

0

]
+
[
ν1t
ν2t

]
,

where the transition matrix T = diag(λ, 1), the vector drift dt =
(βtut, 0)′, and the covariance matrix Qt=diag(σ2

ν1, σ
2
ν2). Thus, the
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time-varying parameter model Equations (2.1)–(2.3) are nested in the
state-space form stated in Equations (2.22) and (2.23).

Next consider the continuous-time IMCmodel. By comparing Equa-
tions (2.15) and (2.26), we observe that α(t) = S(t), T (t) = −βu(t)−δ,
and B(t) = βM(t). Thus, the continuous-time Vidale–Wolfe model is
nested in the state-space form stated in Equation (2.18). The other
eight models — indeed any other Markovian dynamic model — can be
cast into the state space form, including dynamic spatial models (see,
for example, Aravindakshan et al. [2012]).

I close this subsection by presenting an example of a dynamic model
that does not belong to the class of Markovian dynamics. Standard
awareness formation models (for example, Equation (2.1) or (2.12))
imply that awareness decline commences instantaneously. In contrast,
Aravindakshan and Naik [2011] investigate memory effects by allow-
ing the possibility that awareness decline can be delayed due to the
memory for ads. This change converts an ordinary differential equa-
tion (ODE) to a delayed differential equation (DDE). DDEs are a spe-
cial class of differential equations where the argument is allowed to be
“delayed,” and the resulting models exhibit non-Markovian dynamics.
In Aravindakshan and Naik [2011], awareness evolves according to the
delay differential equation

dA(t)
dt

= β
√
u(t)− δA(t− τ), (2.27)

with the initial function A0(t) = A0 over the interval [−τ, 0]. In Equa-
tion (2.27), awareness A(t) and advertising u(t) are non-negative, the
square root function captures the diminishing returns to advertising,
and the parameters (β, δ, τ) belong to the non-negative octant. When
τ 6= 0, the awareness dynamics becomes non-Markovian; that is, the
future and the past are not independent given the present.

By analyzing the induced non-Markovian control problem, Aravin-
dakshan and Naik [2015] show that the optimal trajectory u∗(t) exhibits
periodicity over time, namely, u∗(t) = u∗(t+ t′) for some future time t′.
Specifically, for different values of (β, δ), Figure 2.1 presents truly cyclic
patterns of optimal advertising with different levels of ad spending in
different weeks. This result — the optimality of multi-level pulsing — is
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Figure 2.1: Cyclic optimal advertising policies.

novel especially because only on–off pulsing patterns have been shown
to be optimal (for example, Naik et al. [1998], Dubé et al. [2005],
Freimer and Horsky [2012]) in the extant literature over the past four
decades since Sasieni [1971]. It is important to recognize that even
such non-Markovian dynamic models can be estimated by transform-
ing them into a proper state space form (see Aravindakshan and Naik
[2011]).

2.4 Advantages of state space models

Statistical and econometric estimation approaches make strong
assumptions on data or model. For example, they require no unit root
(that is, stationary time series), no missing values, no irregularly spaced
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observations, no unobserved or partially observed sequences, constancy
of parameters over time, among others. Recent literature, developed by
frequentists and Bayesians, relaxes these assumptions and offers spe-
cialized algorithms to handle missing observations, irregularly spaced
observations, unobserved or partially observed sequences, time-varying
coefficients, and so on. As a result, the literature consists of a plethora
of methods: one for estimating AR models, another one for MA models,
yet another for time-varying coefficients, and so on. Seemingly as many
methods as there are models.

In contrast, rooted in dynamic systems theory in mathematics and
used in engineering, the state space model unifies all of these special
cases over and beyond the 10 examples I presented. The value of this
unification is that ad hoc algorithms are not needed on a model-by-
model basis. A single algorithm (rather more correctly, a theorem),
known as the Kalman filter, given by one set of recursive equations
(namely Equations (3.1), (3.2), (3.3), (3.5), and (3.6) to be presented
later) can estimate all of these diverse models because they can be
shown to be the special cases of the state space form presented in Equa-
tions (2.22) and (2.23) or more generally Equations (2.24) and (2.25)
.

Consequently, state space models offer several practical advantages:

(i) exact likelihood function can be computed to obtain parameter
estimates, infer statistical significance, and select among model
specifications;

(ii) multivariate outcomes are handled as easily as univariate time-
series;

(iii) missing values do not require special algorithms for imputation;

(iv) unequally spaced time-series observations pose no additional chal-
lenges;

(v) unobserved variables such as goodwill or brand equity can be
incorporated;

(vi) time-varying coefficients and nonstationarity can be specified;



206 Dynamic Models in Marketing

(vii) heterogeneity via random coefficients can be introduced;

(viii) coupling and correlations across equations can be specified;

(ix) normative decision-making can be integrated with the economet-
ric analyses;

(x) a common algorithm, based on Kalman filter recursions, can be
used to analyze and estimate diverse model specifications.

The last feature offers the most compelling advantage for using state
space models. Because state space models nest any dynamic specifi-
cation — not just the above 10 models — we need only one algo-
rithm, known as the Kalman filter, to estimate them. This unification
not only offers a mathematical harmony underlying the diversity of
dynamic models, but also furnishes a common estimation algorithm
via the Kalman filter, which we next present.



3
State Estimation

Dynamic models can be estimated using the maximum likelihood
(see Harvey [2001]), expectation–maximization (EM) algorithm (see
Shumway and Stoffer [2011]), or Bayesian estimation (see Harrison
and West [2013]). The maximum likelihood estimation requires the
Kalman filter recursions, whereas EM or Bayesian estimations require
the Kalman filter recursions and the Kalman smoother recursions.
Hence, in this section, I derive both the Kalman filter and smoother
recursions by first considering the linear state space model in Equa-
tions (2.22) and (2.23) and then its nonlinear extension in Equa-
tions (2.24) and (2.25).

3.1 Derivation of the Kalman filter

Consider Equations (2.22) and (2.23) in which the system matri-
ces depend on the parameter vector θ. That is, the system matrices
are Z(θ), T (θ), c(θ), d(θ), H(θ), and Q(θ). Note that θ can be time-
varying; other elements of the system matrices Z, T, c, d, H, and Q

also can be time-varying; even the dimensions of the system matri-
ces can be time-varying (in a conformable manner). For the sake of

207
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exposition, however, we assume θ is fixed and ignore these two gener-
alizations, but note that the filter recursions we derive in this section
remain valid for the general case. Our goal is to derive the best esti-
mate of the state vector αt given the sequential (that is, one at a time)
arrival of the observation vectors {Y1, Y2, . . . , Yt, . . . , YN}, where N is
the sample size.

Let us denote at|t−1 = E[αt|It−1] to be the mean of the state vec-
tor at time t based on information up to and including time t − 1.
In other words, It−1 denotes observations up to t − 1, which can
be expressed as the information set It−1 = {Y1, Y2, . . . , Yt−1}. Also
let at = E[αt|It] denote the mean of the state vector at time t

based on information at time t, which includes Yt. In other words,
It denotes observations up to time t, representing the information set
It = It−1∪{Yt} = {Y1, . . . , Yt−1, Yt}. Similarly, let Pt|t−1 = Cov[αt|It−1]
and Pt = Cov[αt|It] denote the covariance matrices of the state vector
based on information up to t− 1 and t, respectively.

At time t − 1, taking expectation of Equation (2.23), we obtain
E[αt|It−1] = TtE[αt−1|It−1] + dt + E[νt|It−1], which yields

at|t−1 = Ttat−1 + dt. (3.1)

Similarly, we apply the variance operator to Equation (2.23) to get
Cov[αt|It−1] = TtCov[αt−1|It−1]T ′t + Cov[νt|It−1], which yields

Pt|t−1 = TtPt−1T
′
t +Qt. (3.2)

Suppose we get the new observation Yt. Now let us update the above
mean and covariance expressions using the new information set It =
It−1∪{Yt}. Specifically, we update the mean vector proportional to the
forecasting errors:

at = at|t−1 +Kt(Yt − Ŷt), (3.3)

where Ŷt = E[Yt|It−1] = E[(Ztαt + ct + εt)|It−1] = Ztat|t−1 + ct, and
the optimal time-varying matrix Kt is to be determined.

Equation (3.3) embodies the following rationale: (1) the posterior
mean at is estimated by a linear combination of the observed Yt (that is,
at ∝ KtYt); and (2), more importantly, the prior mean at|t−1 is updated
by the amount proportional to the forecast error (Yt − Ŷt) to arrive at
an estimate of the posterior mean at.
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To determine the “best” matrix Kt, define the loss function as the
squared differences between the true and estimated values of the n
elements of the state vector. This loss function is given by

Jt = E
[
(α1t − a1t)2 + (α2t − a2t)2 + · · ·+ (αnt − ant)2]

= E[ν ′tνt] = E[Tr(ν ′tνt)] = Tr(E[νtν ′t])

= Tr(Pt),

(3.4)

where the third equality follows by noting ν ′tνt is a scalar; the fourth
one applies the cyclic permutation within a trace operation (that is,
Tr(ABC) = Tr(BCA) = Tr(CAB)) and then switches the trace and
expectation operators; and the last one sums the diagonal of the matrix
Pt (to be determined).

To determine Pt we first express the transition error vector as fol-
lows:

νt = αt − at
= αt − (at|t−1 +Kt(Yt − Ŷt))
= (αt − at|t−1)−Kt(Yt − (Ztat|t−1 + ct))
= νt|t−1 −Kt(Ztαt + ct + εt − Zat|t−1 − ct)
= νt|t−1 −KtZt(αt − at|t−1)−Ktεt

= νt|t−1 −KtZtνt|t−1 −Ktεt

= (I −KtZt)νt|t−1 −Ktεt,

where vt|t−1 = αt−at|t−1. Then, we evaluatePt = E[νtν ′t] by simplifying
the cross product terms as follows:

Pt = E[νtν ′t]

= E[{(I −KtZt)νt|t−1 −Ktεt}{(I −KtZt)νt|t−1 −Ktεt}′]

= (I −KtZt)E[νt|t−1ν
′
t|t−1](I −KtZt)′

−(I −KtZt)E[νt|t−1ε
′
t]K ′t −KtE[εtν ′t|t−1](I −KtZt)′

+KtE[εtε′t]K ′t

= (I −KtZt)Pt|t−1(I −KtZt)′ +KtHtK
′
t, (3.5)
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where the last equality follows because the second and third terms
in the third equality vanish due to independence across periods (that
is, E[νt|t−1ε

′
t] = 0). Finally, to determine the “best” gain matrix K∗t

across infinitely many n × m time-varying Kt matrices, we minimize
the loss function in (3.4). Recalling that ∂Tr(ABA′) = 2AB∂A for
symmetric B, we obtain the first-order condition:

∂Jt
∂Kt

= 2(I −KtZt)Pt|t−1(−Zt)′ + 2KtHt,

which when equated to zero and solved for yields the optimal gain
matrix K∗t :

(I −K∗t Zt)Pt|t−1Z
′
t = K∗tHt

Pt|t−1Z
′
t = K∗t (ZtPt|t−1Z

′
t +Ht)

K∗t = Pt|t−1Z
′
t(ZtPt|t−1Z

′
t +Ht)−1. (3.6)

Thus the gain factor K∗t is optimal in the sense it yields the minimum
variance state estimator.

3.2 Summary of the Kalman filter

Let the partially (or fully) observed linear-in-state dynamic stochastic
system be specified by Equations (2.22) and (2.23) re-stated below:

Observation equation : Yt = Ztαt + ct + εt, εt ∼ N(0, Ht),
(2.22)

Transition equation : αt = Ttαt−1 + dt + νt, νt ∼ N(0, Qt).
(2.23)

Then, based on information available up to and including time t, the
unique and optimal time-path of the distribution of the state vector —
that is, the evolution of the state vector’s joint density function — is
given by the following recursions that constitute what is known as “the
celebrated Kalman filter”:

Prior means (time update)

at|t−1 = Ttat−1 + dt, (3.1)
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Prior covariances (time update)

Pt|t−1 = TtPt−1T
′
t +Qt, (3.2)

Kalman gain factor

Kt = Pt|t−1Z
′
t(ZtPt|t−1Z

′
t +Ht)−1, (3.6)

Posterior means (measurement update)

at = at|t−1 +Kt(Yt − Ztat|t−1 − ct)), (3.3)

Posterior covariances (measurement update)

Pt = (I −KtZt)Pt|t−1(I −KtZt)′ +KtHtK
′
t. (3.5)

The above filter recursions run forwards from the given initial state
distribution α0 ∼ N(a0, P0). For exact initialization of the Kalman
filter, see Osinga et al. [2010].

3.3 Properties of the Kalman filter

Below I state the important properties of the Kalman filter.

1. The mean and covariance of the state vector, (at−1, Pt−1), contain
complete information up to time t−1. To obtain the mean vector
at, we only need to know the present data Yt without access to
any subset of the past observations Yk, k < t. In other words, the
history contained in It−1 = {Y1, Y2, . . . , Yt−1} can be discarded.
This property follows from the Markov structure of the transition
Equation (2.23).

2. To obtain the covariance matrix Pt, we need neither the his-
tory It−1 = {Y1, Y2, . . . , Yt−1} nor the current information Yt. All
matrices Pk, k = 1, . . . , N can be pre-computed before observing
any data. They only depend on the system matrices given by the
dynamic model (that is, Equations (2.22) and (2.23)). To see this,
observe that Equations (3.2), (3.5), and (3.6) do not depend on
Yk for any k. This property does not hold in general for nonlinear
models (for example, Equations (2.24) and (2.25)).
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3. Equation (3.5) for the covariance matrix evolution is known
as the Joseph stabilized version. It guarantees that Pt remains
symmetric and positive definite if Pt|t−1 is symmetric and pos-
itive definite. We can also use another equivalent expression:
Pt = (I −Kt, Zt)Pt|t−1. Although compact, this latter expression
need not preserve symmetry or positive definiteness over time.

4. The Kalman filter is both unique and optimal across all possi-
ble estimators of any linear state space model with normal errors
(εt, νt). This property holds even when the errors (εt, νt) are cor-
related over time or between themselves.

5. The Kalman filter is optimal across all linear estimators even in
the presence of non-normal errors (εt, νt). This property holds
even when errors (εt, νt) are correlated over time or between
themselves. This property follows from the fact that the above
derivation did not rely on the normality of the error terms —
just that their second moments (H,Q) are finite regardless of the
shape of the density function. In other words, if the state space
model is linear, and the error terms follow any non-normal distri-
bution (for example, Gamma, uniform, mixture of normals) with
finite two moments, then the Kalman filter recursions provide the
best linear updating of the state vector.

3.4 Kalman smoother

3.4.1 What is smoothing?

Kalman filter provides the mean at and the covariance Pt of the state
vector based on the past and present information up to time t, which
can be expressed as It = It−1︸︷︷︸

past

∪ Yt︸︷︷︸
present

. Now suppose we are given addi-

tional information from the future Ik = {Y1, . . . , Yt−1, Yt, Yt+1, . . . , Yk︸ ︷︷ ︸
future

},

where k > t. Then how do we optimally update the present mean and
covariance using future information? Smoothing answers this question.
Because we use more information, the resulting means yield “smoother”
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time plots than those based on the forecast estimates {at|t−1 : t =
1, 2, . . . , N} or the filtered estimates {at|t : t = 1, 2, . . . , N}. In gen-
eral, three kinds of smoothing estimators exist: fixed-point smoother,
fixed-lag smoother, and fixed-interval smoother.

In fixed-point smoothing, we improve the estimate of the state vec-
tor at a fixed time point s as future information arrives. In notation,
at any time s, the Kalman filter provides the filtered estimate as|s;
then denoting as|k = E[αs|Ik], k > s, we update the filtered mean as|s
to obtain as|s+1, as|s+2, as|s+3 as the new information Ys+1, Ys+2, Ys+3
rolls in. Here the time point s remains fixed.

In fixed-lag smoothing, we seek improvement in the filtered esti-
mates τ periods ago. In notation, at any time s, we obtain the estimate
as−τ |s for s = τ, τ + 1, . . . so on. Here the lag window τ remains fixed,
but the time point s marches on.

Lastly, in fixed-interval smoothing, we seek improvement in all the
filtered estimates over the observation span N . In notation, at every
time t, we seek the estimate a0|N , a1|N , . . . , at|N , . . . , aN |N . Here the
time span N remains fixed, but the time point t covers the entire period
from the initial to the terminal value.

In marketing, the first two smoothing concepts have not been used
as yet, whereas the fixed-interval smoothing is necessary for estimat-
ing model parameters using either Bayesian or EM estimation (but
smoothing is not required in maximum likelihood estimation and infer-
ence). Hence, I next derive the optimal recursions for fixed-interval
smoothing.

3.4.2 Derivation of the Kalman smoother

Similar to the derivation of Kalman filter, we can apply the optimiza-
tion theory to obtain the Kalman smoother recursions without requir-
ing normality (that is, property 5 holds for the Kalman smoother as
well). But we will sacrifice this generality here in the interest of learning
from statistical theory the two important results:
Result 1. The Law of Iterated Expectation states that

• E[x1] = E[E[x1|x2]]

• Cov[x1] = E[Cov[x1|x2]] + Cov[E[x1|x2]].
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Result 2. If
[
x1
x2

]
∼ N

([
µ1
µ2

]
,

[
Σ11 Σ12
Σ′12 Σ22

])
, then the conditional

mean follows x1|x2 ∼ N(µ,Σ), where µ = µ1 + Σ12Σ−1
22 (x2 − µ2) and

Σ = Σ11 − Σ12Σ−1
22 Σ′12.

Armed with these two results, we derive the fixed-interval Kalman
smoother. Let us first stack the posterior state vector αt|It above the
next period’s prior state vector αt+1|It as follows:[

αt|It
αt+1|It

]
=
[
αt|t
αt+1|t

]
∼ N

([
at

at+1|t

]
,

[
Pt PtT

′
t+1

Tt+1Pt Pt+1|t

])
,

where we obtained the off-diagonal matrices by noting that
Cov(αt+1|t, αt|t) = Cov((Tt+1αt), (αt)|It) = Tt+1Pt. Applying Result 2,
we then get

E[αt|αt+1|t] = at + PtT
′
t+1P

−1
t+1|t(αt+1|t − at+1|t) (3.7)

Cov[αt|αt+1|t] = Pt − PtT ′t+1P
−1
t+1|tTt+1Pt. (3.8)

Now we use Result 1 to derive the smoothed mean:

at|N = E[αt|IN ]

= E[E[αt|αt+1|t]|IN ]

= E[at + Lt(αt+1|t − at+1|t)|IN ]

= at + Lt(at+1|N − at+1|t), (3.9)

where we denote Lt = P tT
′
t+1P

−1
t+1|t obtained in (3.7). In Equation (3.9),

the first equality defines the smoothed mean as the expected value of
the state vector based on the entire sample (past, present, and future)
up to N . The second equality applies the law of iterated expectation
and conditions on the random variable αt+1|t. The third equality sub-
stitutes the result obtained in Equation (3.7), and it depends on the
random variable αt+1|t. The final equality re-applies the definition of
the smoothed mean (that is, at+1|N = E[αt+1|t|IN ]).

To gain intuition, note that the smoothing occurs backwards, start-
ing from t = N, N−1, . . . , 1, 0. The final equality in (3.9) incorporates
the effect of future information on the filtered mean at obtained from
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the Kalman filter. It reveals that the correction to the filtered mean
at is proportional to the change in the expected values of αt+1 based
on the complete information at N and the available information at t.
The proportionality factor, Lt, depends on the ratio of the posterior
covariance Pt|t to the prior covariance Pt+1|t.

Similarly, we derive the smoothed covariance matrix:

Pt|N = Cov[αt|IN ]

= E[Cov[αt|αt+1|t]|IN ] + Cov[E[αt|αt+1|t]|IN ]

= (Pt − LtPt+1|tL
′
t) + Cov[at + Lt(αt+1 − at+1|t)|IN ]

= Pt − LtPt+1|tL
′
t + LtPt+1|NL

′
t

= Pt − Lt(Pt+1|t − Pt+1|N )L′t. (3.10)

In Equation (3.10), the first equality defines the smoothed mean as the
covariance of the state vector based on the entire sample (past, present,
and future) up to N . The second equality applies the law of iterated
expectation and conditions on the random variable αt+1|t. In the third
equality, the first term on the right-hand side substitutes the result
obtained in Equation (3.8), which does not involve a random variable;
the second term substitutes the result obtained in Equation (3.7), which
involves the random variable αt+1|t|IN . The final equality re-applies the
definition of the smoothed covariance (that is, Pt+1|N = Cov[(αt+1|t −
at+1|t)|IN ]). As before, the correction to the filtered covariance Pt is
proportional to the change in the expected covariances of αt+1 based
on the available information at t and the complete information at N .
Because information reduces variance, we expect (Pt+1|t − Pt+1|N ) to
be positive definite; hence the smoothed covariance is smaller than its
filtered estimate.

3.4.3 Summary of the Kalman smoother

Let the partially (or fully) observed linear-in-state dynamic stochastic
system be specified by Equations (2.22) and (2.23) re-stated below:

Observation equation : Yt = Ztαt + ct + εt, εt ∼ N(0, Ht)
(2.22)
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Transition equation : αt = Ttαt−1 + dt + νt, νt ∼ N(0, Qt)
(2.23)

Then, based on all information available up to and including time
t = N , the unique and optimal time-path of the distribution of the
state vector — that is, the evolution of the state vector’s joint density
function — is given by the following recursions that constitute what is
known as “the Kalman smoother”:

Smoothed means (temporal update)

at|N = at + Lt(at+1|N − at+1|t), (3.9)

Smoothed covariances (temporal update)

Pt|N = Pt − Lt(Pt+1|t − Pt+1|N )L′t, (3.10)

Smoother gain factor

Lt = PtT
′
t+1P

−1
t+1|t. (3.7)

The above smoother recursions run backwards from the terminal state
distribution αN ∼ N(aN , PN ), which is furnished by the Kalman filter
at t = N .

3.5 Nonlinear filters

The above development completes the solution to the linear state esti-
mation problem: what is the best estimate of the state vector and its
precision given the set of observations up to time t−1 before the present
data Yt arrives; the best state estimate and its precision upon arrival
of the present data; and the best state estimate and its precision after
future observations up to N roll in.

But the results assume linear dynamics in Equations (2.22)
and (2.23). Arguably, the market dynamics need not be linear. Then
why did we spend so much time developing the linear theory? In The
Feynman Lectures on Physics (see Chapter 25), Richard Feynman offers
the insight, “The answer is simple: because we can solve them! . . . if we
understand linear equations, we are ready, in principle, to understand
a lot of things.” See Feynman et al. [2006, p. 25-4].
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Accordingly, I describe how the linear theory helps us tackle non-
linear filtering. Consider the nonlinear state space model in Equa-
tions (2.24) and (2.25). Let the nonlinear link function Z(αt) = α2

t ,
for example. Then the expected value E[Y t] = E[Z(αt) + ct + εt] =
E[α2

t ] + ct 6= (E[αt])2 + ct. In words, the mean of the nonlinear func-
tion of random variables is not the same as the nonlinear function
of the means of random variables. In general, E[Z(αt)] 6= Z(E[αt])
and E[T (αt−1)] 6= T (E[αt−1]). These facts exacerbate the updat-
ing of the means and covariance of the state vector as observa-
tions arrive sequentially. The linearity of state space models circum-
vents this problem, leading to the exact Kalman filter and smoother
recursions.

To derive the optimal nonlinear filter, not only do we need to update
the means and covariance of the state vector, but its entire probabil-
ity density at each instant — that includes the third moment, fourth
moment, and all higher-order moments. The good news is that the
exact optimal nonlinear filter exists. Analogous to the Kalman and
Bucy [1961] filter for continuous-time linear state space models, the
Kushner equation [Kushner, 1964] and the Zakai equation [Zakai, 1969]
provide the exact updating of the un-normalized density function of
the state vector over time for continuous-time nonlinear state space
models. Kushner’s equation follows a nonlinear stochastic partial dif-
ferential equation, while Zakai’s equation is a linear stochastic partial
differential equation.

Both the solutions are infinite dimensional in general and would
require finite dimensional approximations to implement. Hence, I
describe a simpler approach known as the previously mentioned EKF,
which is an approximate solution obtained via the Taylor series expan-
sion of the nonlinear Z(·) and T (·) functions. The earliest application
of EKF was by NASA for nonlinear re-entry dynamics to bring back
the rocket after moon landing [Jazwinski, 2007]. Over the years EKF
is “. . . undoubtedly the most widely used nonlinear state estimation
technique . . . applied in the past few decades” [Simon, 2006, p. 396]
and considered the de facto standard in nonlinear state estimation (see
Julier and Uhlmann [2004]).
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3.5.1 Extended Kalman filter (EKF)

The idea underlying EKF is simple. It uses the linear Kalman filter
and smoother recursions, except we replace the link matrix Z and the
transition matrix T by the Jacobian of the corresponding nonlinear
functions. Specifically, denote Z̃t = ∂Z(α)

∂α′

∣∣∣
α=at|t−1

as the m × n Jaco-

bian matrix of the nonlinear link function Z(α) with respect to the
vector α, which is evaluated at the prior mean at|t−1. Similarly, let
T̃t = ∂T (α)

∂α′

∣∣∣
α=at|t−1

be the n × n Jacobian matrix of the nonlinear

transition function T (α) evaluated at the prior mean at|t−1.
To summarize, let the partially (or fully) observed nonlinear state

dynamic stochastic system be specified by Equations (2.24) and (2.25)
re-stated below:

Observation equation : Yt =Zt(αt) + ct + εt, εt ∼ N(0, Ht)
(2.24)

Transition equation : αt =Tt(αt−1) + dt + νt, νt ∼ N(0, Qt)
(2.25)

Then, based on information available up to and including time t, the
time-path of the distribution of the state vector — that is, the evolution
of the state vector’s joint density function — is given by the following
recursions:

Prior means (time update)

at|t−1 = Tt(at−1) + dt,

Prior covariances (time update)

Pt|t−1 = T̃tPt−1T̃
′
t +Qt,

Kalman gain factor

Kt = Pt|t−1Z̃
′
t(Z̃tPt|t−1Z̃

′
t +Ht)−1,

Posterior means (measurement update)

at = at|t−1 +Kt(Yt − Zt(at|t−1)− ct),
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Posterior covariances (measurement update)

Pt = (I −KtZ̃t)Pt|t−1(I −KtZ̃t)′ +KtHtK
′
t.

Besides linearization, approximation also occurs in the predicted
Ŷt = E[Yt|It−1] = E[Z(αt) + ct + εt)|It−1] ≈ Z(at|t−1) + ct, which
is approximate because E[Z(αt)|It−1] 6= Z(at|t−1). To mitigate the
resulting bias, we can further refine the expansion point at which
the Jacobians are evaluated. In the iterated EKF, at time t, we
first apply the EKF to obtain the posterior mean a0

t , which is then
refined iteratively by evaluating the Jacobians Z̃ lt = ∂Z(α)

∂α′

∣∣∣
α=al

t|t−1
and

T̃ lt = ∂T (α)
∂α′

∣∣∣
α=al

t|t−1
for l = 0, 1, 2, . . . , L. Using the refined link and

transition matrices, we compute the new prior mean, new prior covari-
ance, new Kalman gain K l

t to obtain the next refined posterior mean
al+1
t = alt|t−1 + K l

t(Yt − Z(alt|t−1) − ct). We continue these iterations
till the consecutive refined posterior means do not change appreciably.
Then, we process the next observation using the EKF within which
we repeat the L iterations. For marketing applications of the nonlinear
Kalman filter, see Naik et al. [2008] or Kolsarici and Vakratsas [2010].

3.5.2 Other nonlinear filters

The EKF is simple to understand and implement: replace the link and
transition matrices in the Kalman filter by the Jacobians of the nonlin-
ear functions. Other nonlinear filters entail varying degrees of concep-
tual complexity and computational effort in the pursuit of marginal
improvement in accuracy. More importantly, the resulting improve-
ments are model- and data-dependent with limited generalizability.
Hence we briefly present two types of nonlinear filters: particle filter
and unscented Kalman filter (UKF).

Particle filter represents the posterior density of the state vector,
p(αt|It), using a set of weights and points {wt,i, α+

t,i}, so that

p(αt|It) = Lim
j→∞

∑J

i=1
wt,iδ(α+

t,i),

where δ(α+
t,i) is nonzero at the point α+

t,i and zero elsewhere, and it inte-
grates to unity. Particle filtering is approximate because the number of
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points J is finite in practice. Typically, J = 1000 for state dimension
n < 5. These points are known as draws or particles. The positive and
negative superscripts on αt,i denote the posterior and prior particles,
respectively. In particle filtering, the particles {wt,i, α+

t,i} propagate to
new set {wt+1,i, α

+
t+1,i} at the next time period based on the observed

data and model dynamics. Instead of using the filtering recursions to
obtain the mean and covariance of the state vector, a simulation step
generates the set of particles and weights to characterize the distribu-
tion of the state vector.

To convey the basic ideas of particle filtering, let us randomly
generate J state vectors from the initial density p(α0|I0), which is
assumed to be known. At time 0, we denote the posterior parti-
cles by α+

0,i, i = 1, . . . , J . Then, at each time step t = 1, 2, . . . , N ,
we obtain the prior particles α−t,i = Tt(α+

t−1,i) + dt + νit , where νit
are random draws from the error distribution νt ∼ N(0, Qt) Next,
using the observed data Yt, we obtain the relative likelihood given by
qt,i ∝ exp(−0.5(Yt−Z(α−t,i)− ct)′H

−1
t (Yt−Z(α−t,i)− ct)). We normalize

the relative likelihoods to sum to unity via wt,i = qt,i/
∑
i qt,i. Subse-

quently, to obtain the posterior particles, we resample from the likeli-
hood distribution in two-steps. First, we generate a random number r
from a uniform distribution [0,1]. Second, for each particle i, we accu-
mulate the likelihood until it exceeds r. In other words,

∑j−1
m=1 qm < r

and
∑j
m=1 qm ≥ r. Here m is an index of summation, and we seek the

smallest value of j such that the accumulated sum just exceeds the ran-
dom draw r. See Figure 15.2 in Simon [2006] for an illustration. Then
assign the prior particle α−t,j to the new posterior particle α+

t,i. That is,
α+
t,i = α−t,j with probability qj for (i, j) = 1, . . . , J . This completes the

loop to obtain the new set {wt,i, α+
t,i}. Repeat the above steps across

N time periods. See Andrieu and Doucet [2002] for further details. For
a marketing application of particle filtering, see Bruce [2008].

The above approach may lead to degenerate weights when the
regions of the state space with significant mass under p(Yt|αt) do not
overlap with p(αt|It−1). In such cases, resampling selects a few prior
particles to become posterior particles, leading to the collapse of all
particles to the same value. This phenomenon is called the “black
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hole” of particle filtering. Drawing a larger set J by brute force not
only increases the computational burden, but also delays the inevitable
sample impoverishment. To remedy this problem, we consider rough-
ening, prior editing, regularized particle filtering, MCMC resampling,
and auxiliary particle filtering. For these details, readers should consult
Simon [2006, Chapter 15] and references therein.

Particle filters draw a large set of random particles and then relies
on a swarm of these particles to zero in on an appropriate region of
the state space to characterize the posterior density p(αt|It), given
the model dynamics and observed data. In contrast, another class of
nonlinear filters designs a filter based on a small set of intelligently
located points in the state space (as opposed to randomly drawn).
These points are known as sigma points. Recall that, in nonlinear
filtering, E[Z(αt)] 6= Z(E[αt]) and E[T (αt−1)] 6= T (E[αt−1]), which
leads to inaccurate expected values which, in turn, injects inaccuracy
in the covariance matrices. These inaccuracies accumulate over time
t = 1, . . . , N causing the filter to diverge from the true state evolution.

To mitigate this problem, we seek to obtain better estimates of the
means and covariance matrix of the nonlinear function y = h(x) via
the unscented transform [Julier and Uhlmann, 2004]. Chapter 14.2 by
Simon [2006] provides a lucid explanation of unscented transformations.
To cover it briefly here, let x denote a random vector of dimension
n × 1 with mean x̄ and covariance matrix S. The distribution of x
can be non-normal. Then find the Cholesky matrix

√
nS such that

(
√
nS)′
√
nS = nS. Next select the specific 2n sigma points as follows:

xi = x̄+ x̃i, i = 1, . . . , 2n,
x̃i = (

√
nS)′i, i = 1, . . . , n,

x̃(n+i) = − (
√
nS)′i, i = 1, . . . , n,

where (
√
nS)i is the ith row of

√
nS. Finally, compute the

expected value and covariance using µy = 1
2nΣ2n

i=1y
i and Σy =

1
2nΣ2n

i=1(yi − µy)(yi − µy)′, where yi = h(xi) for i = 1, . . . , 2n. It can be
shown (see Simon [2006, p. 444]) that µy is accurate up to the third-
order Taylor series expansion of h(·).
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To run the unscented Kalman filter, let (a0, P0) denote the initial
mean vector and covariance matrix. At time t = 1, 2, . . . , N specify the
sigma points as follows:

ait−1 = at−1 + ãi, i = 1, . . . , 2n,
ãi = (

√
nPt−1)′i, i = 1, . . . , n,

ã(n+i) = −(
√
nPt−1)′i, i = 1, . . . , n.

Obtain the prior sigma points using the transition Equation (2.25).
That is, ait|t−1 = Tt(ait−1) + dt for i = 1, . . . , 2n. Average across those
sigma points to find the prior mean at|t−1 = 1

2nΣ2n
i=1 ait|t−1. Simi-

larly, compute the prior covariance Pt|t−1 = 1
2nΣ2n

i=1(ait|t−1 − at|t−1)
(ait|t−1 − at|t−1)′ +Qt. Now use this new prior mean vector and covari-
ance matrix to find the new sigma points:

ait = at|t−1 + ãi, i = 1, . . . , 2n,

ãi =
(√

nPt|t−1
)′
i
, i = 1, . . . , n,

ã(n+i) = −
(√

nPt|t−1
)′
i
, i = 1, . . . , n.

Using the observation equation get Y i
t = Zt(ait) + ct for i =

1, . . . , 2n. Then average across those sigma points to predict the
observation Ŷt = 1

2nΣ2n
i=1Y

i
t . Next compute the observation covari-

ance Py,t = 1
2nΣ2n

i=1(Y i
t − Ŷt)(Y i

t − Ŷt)′ +Ht and the cross-covariance
Pαy,t = 1

2nΣ2n
i=1(ait − at|t−1)(Y i

t − Ŷt)′. Thus obtain the Kalman gain
factor Kt = Pαy,tP

−1
y,t . Finally update the posterior mean at = at|t−1 +

Kt(Yt−Ŷt) and the posterior covariance Pt = Pt|t−1−KtPy,tK
′
t. Repeat

the above steps across N time periods.
Because the UKF relies on a small set of design points, located intel-

ligently in the state space rather than drawn randomly by brute force,
it is computationally more efficient than particle filters. An application
of UKF in marketing literature does not exist as yet. We close this
section by noting that there are other ways to design sigma points; for
example, see cubature Kalman filter [Arasaratnam and Haykin, 2008].



4
Parameter Estimation

In the previous section, we learnt how to estimate the state vec-
tor and its precision, (atPt), using observed data, but assuming that
the parameters defining the system matrices, namely, Z(θ), c(θ), H(θ),
T (θ), d(θ), Q(θ)}, are known. For example, consider Equations (2.1)
and (2.2), which depend on the parameters (A0, λ, β, σ

2
ε , σ

2
ν), whose val-

ues are not known and needs to be determined based on the observed
sample. This section explains how to estimate the parameter vector θ
and its precision using observed data. To this end, I present the maxi-
mum likelihood estimation, inference, and model selection.

4.1 What is the likelihood principle?

Suppose we observe a sample {Y1. . . , Y N} from the normal distribu-
tion N(µ,Σ). What is the probability of this event? We compute it via
the joint density function f(Y1, . . . , Y N |θ), where θ = (µ, vech(Σ))′.
We now reverse our perspective to imagine the joint density func-
tion as a function of θ rather than the random variables {Y1. . . , Y N}.
Let us denote the resulting function as L(θ|Y 1, . . . , Y N ) and call

223
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it the likelihood function. In other words, the likelihood function
L(θ|Y 1, . . . , Y N ) equals the joint density function f(Y1, . . . , Y N |θ),
except that the domain of L(·) is the parameter space in which θ lives,
whereas the domain of f(·) is the space of random variables {Yt}. So
the parameter θ is the variable that changes in L(θ|Y 1, . . . , Y N ) for the
fixed data, whereas the random variables change in f(Y1, . . . , Y N |θ) for
the fixed θ.

The likelihood principle states that the likelihood function, which
equals the joint density function viewed as a function of θ given
the data, contains all relevant information about θ for the purposes
of estimation and inference. Consequently, if L(θ1|Y 1, . . . , Y N ) >

L(θ2|Y 1, . . . , Y N ) then θ1 is a better estimate than θ2 because the
likelihood of the sample arising from the joint density indexed by
f(Y1, . . . , Y N |θ1) is larger. If so, then the “best” estimate is the
one that corresponds to the largest value of the likelihood function.
Hence the practical application of the likelihood principle leads us to
find the maximum of the likelihood function and consider the corre-
sponding θ∗ as the maximum-likelihood estimate. We express sym-
bolically “the argument that maximizes the likelihood function” by
θ∗ = ArgMaxL(θ|Y 1, . . . , Y N ). Figure 4.1 illustrates this idea of max-
imum likelihood estimation.

To assess the precision of θ∗, we look at the curvature of the like-
lihood function at the maximum. See Figure 4.1. Recall from basic
geometry that a straight line has zero curvature; sharp bend has a large
curvature. The larger the curvature, the tighter the range θ∗ varies. The
smaller the curvature, the flatter the likelihood function, the broader
the range of θ∗. Hence an inverse of the curvature provides the estimate
of V ar(θ∗). We formalize this intuition in Section 4.3.

4.2 State space model estimation

To estimate the parameters of state space models, we begin by writing
the likelihood function for observing the data {Y1, . . . , Y N} sequentially
over time. From the above discussion, the likelihood function equals the
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Hessian =
curvature

LL*

θ*

Figure 4.1: Likelihood Principle.

joint density of observing the realized sequence {Y1, . . . , Y N}. Formally,

L(θ|{Y1, Y2, . . . , YN}) = f(Y1, Y2, . . . , YN ; θ)

= f(YN |{Y1, Y2, . . . , YN−1}; θ)

×f({Y1, Y2, . . . , YN−1}; θ)

= f(YN |IN−1, θ)× f(YN−1|IN−2, θ)

×f({Y1, Y2, . . . , YN−2}; θ)

= f(YN |IN−1, θ) f(YN−1|IN−2, θ) . . .

f(Y1|I0, θ)

=
N∏
t=1

f(Yt|It−1, θ). (4.1)

The first equality expresses the equivalence of the likelihood function
and the joint density function. The second equality decomposes the
joint density into the product of the conditional density of observing
YN |IN−1 with the joint density of the event {Y1, . . . , Y N−1}. The next
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two equalities recursively apply this logic to arrive at the last equality
that expresses the likelihood function as the product of conditional
densities.

Because Yt|It−1 is normally distributed, that is, Yt|It−1 ∼ N(µt,Σt),
we can further simplify Equation (4.1) to obtain the log-likelihood func-
tion:

LL(θ) = ln(L(θ|{Y1, Y2, . . . , YN}))

= ln
(
N∏
t=1

f(Yt|It−1, θ)
)

=
N∑
t=1

ln(f(Yt|It−1, θ))

= − 0.5
N∑
t=1

[
ln(det(Σt)) + (Yt − µt)′Σ−1

t (Yt − µt)
]
. (4.2)

In Equation (4.2), we evaluate the natural log of the likelihood func-
tion because (1) the monotonicity of logarithm ensures the locations
of the maximized L(θ) and LL(θ) remain the same, and (2) the sums
in the last two equalities are easier to maximize (than the product
form in (4.1)). We obtain the last equality in (4.2) based on the result
f(Yt|It−1) = (2π)−m det(Σt)−0.5 exp(−0.5(Yt−µt)′Σ−1

t (Yt−µt)), where
det(·) denotes the determinant of a matrix, and the constant (2π)−m

is ignored because it does not depend on θ.
In linear state space models, µt = E[Yt|It−1] = E[Ztαt + ct +

εt|It−1] = Ztat|t−1 + ct. Similarly, Σt = Cov[Yt|It−1] = ZtPt|t−1Z
′
t +Ht.

Using these expressions, we obtain µt and Σt recursively to build
the log-likelihood function in (4.2). Because the system matrices are
potentially nonlinear functions of θ, both µt and Σt become com-
plicated nonlinear functions of θ even though the state space model
is linear-in-state and the Kalman filter offers closed-form recursions.
In nonlinear state space models, µt = E[Yt|It−1] = Zt(at|t−1) + ct

and Σt = Cov[Yt|It−1] = Z̃tPt|t−1Z̃
′
t + Ht, where Z̃t is the Jaco-

bian used in the EKF (see Section 3.3.1). Hence, for both the linear
and nonlinear state space models, the maximization of (4.2) requires
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numerical solvers, which are based on quasi-Newton algorithms (for
example, BFGS, BHHH) and are available in commercial software (for
example, Matlab’s fminunc or Gauss’ Optmum) and free open source
software (for example, optimx1 in R). Gill et al. [1982] and Nocedal and
Wright [2006] serve as good references to quasi-Newton optimization
methods.

By applying numerical optimization, we obtain the maximum-
likelihood estimates:

θ∗ = ArgMaxLL(θ|Y 1, . . . , YN ). (4.3)

In numerical optimization, the main challenges are the lack of conver-
gence or the convergence to local maxima. If convergence is failed, (1)
relax the tolerance on the allowable maximum slope till you find good
starting values θ0 that lead to the neighborhood of θ∗ and then tighten
it back. (2) Specify different θ0 randomly. (3) Rescale (Yt, Xt) so that
the elements of θ have similar magnitudes; this fix is the most
important one. (4) Use DFP or BHHH algorithm instead of BFGS to
maximize LL (see Gill et al. [1982] and Nocedal and Wright [2006]). (5)
Use derivative-free methods to maximize LL and use its solution as
θ0. (6) Use EM algorithm to maximize E[LL] as explained in Shumway
and Stoffer [2011] and then use the resulting EM estimates as the start-
ing values θ0. That is because EM does not provide the Hessian at con-
vergence, so standard errors are unavailable, and hence this ML step is
required for statistical inference. Finally, ensure that multiple starting
values do not yield larger LL∗; if multiple (local) maxima are attained,
select θ∗ corresponding to the largest value of LL∗.

4.3 Statistical inference

As mentioned, intuitively, Var(θ∗) depends on the curvature of the
likelihood function at the maximum. We measure curvature using the
second derivative of the likelihood function. Suppose θ is a K × 1 vec-
tor. Then we compute the K ×K matrix of second partial derivatives,

1For documentation and download, see http://cran.r-project.org/web/packages/
optimx/optimx.pdf.



228 Parameter Estimation

known as the Hessian matrix and defined by H = ∂2L(θ)
∂θ∂θ′ . Note that

each element of Yt in the sample {Y1, . . . , Yt, . . . Y N} traces a curve as
a function of time (for example, {Yj1, . . . , Yjt, . . . Y jN}). Different real-
izations of Yt would generate different random curves; collectively they
represent an ensemble of infinitely many curves. Hence, we take the
expectation of the sample H to obtain the Fisher information matrix:

= = E[−H]. (4.4)

Why the negative sign? Because the likelihood function L(θ) increases
at a decreasing rate to attain the maximum, its Hessian H is nega-
tive definite at the maximum point. (As an aside, this fact satisfies
the second-order condition, thereby ensuring θ∗ in (4.3) locates the
maximum of L(θ).) The negative sign thus renders = as a positive def-
inite matrix, thus conforming to the properties of covariance matrices.
(Recall from basic calculus that a Hessian is symmetric by construc-
tion.)

Having obtained the Fisher information matrix, the likelihood the-
ory proves that, asymptotically as the sample size N tends to infinity,

Cov(θ∗) = =−1, (4.5)

which formalizes the intuition that the inverse of the curvature mea-
sures the variability of the estimates. Furthermore, the likelihood the-
ory proves that the maximum-likelihood estimators are consistent (that
is, θ∗N → θ as N →∞) and asymptotically normally distributed (that
is, θ∗ ∼ N(θ,=−1)).

We implement this theory in practice as follows. We compute the
Hessian matrix H = ∂2L(θ)

∂θ∂θ′ , invert and multiply by negative unity, to
get Cov(θ∗) = −H−1, which represents the variance–covariance matrix
of the estimated parameters. Using it, we can conduct any statistical
inference and joint hypotheses tests. For example, to obtain standard
errors, we extract the diagonal of Cov(θ∗) and take the square roots
of its elements (that is, se(θ∗) = sqrt(diag(−H−1))), which can then
provide the t-values and confidence intervals.

The above statistical inference assumes that the model specification
is correct. But the estimated model specification could be wrong (that
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is, different from the true data generating process). To hedge for such
misspecification errors, we conduct robust inferences. Specifically, we
compute a robust estimator of the variance-covariance matrix given by
the sandwich estimator [Huber, 1967, White, 1980]:

V = (−H−1)M(−H−1), (4.6)

where M is a K × K matrix of the gradients of the log-likelihood
function. That is, M = G′G and G is the N ×K matrix obtained by
stacking the 1 × K vector of the gradient of LL(θ) for each of the N
observations. In correctly specified models, M = −H−1 and so both
the Equations (4.5) and (4.6) yield exactly the same standard errors
(as they should); otherwise, we use the robust standard errors given by
the square roots of the diagonal elements of V .

4.4 Model selection

Applying the maximum-likelihood approach to a given data set, we
can estimate model parameters and assess their statistical signifi-
cance. Indeed, we can estimate multiple models: Model 1, Model 2,
Model 3, and so on. Then how do we decide which model to retain?
To answer this question, model selection literature offers metrics to
evaluate “good” models from a set of alternative models.

Good models exhibit (1) simplicity to facilitate understanding and
(2) fidelity to furnish accurate forecasts. These two goals exert oppos-
ing forces: simplest models (for example, intercept only) do not pre-
dict well, whereas complex models may generate good forecasts but
obfuscate insights. To balance the opposing forces of simplicity (mea-
sured by parsimony) and fidelity (measured via goodness-of-fit), statis-
ticians developed a few metrics, known as information criteria, such as
AIC (Akaike information criterion), AICC (corrected AIC), and BIC
(Bayesian information criterion):

AIC = − 2LL∗ + 2K,

AICc = − 2LL∗ + N(N+K)
N−K−2 ,

BIC = − 2LL∗ +Kln(N).

(4.7)
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Table 4.1: Flowchart for the ML-KF estimation, inference, and selection.

Step 1 • Load data (Yt, Xt) for t = 1, . . . , N
• Setup the parameter vector to be estimated, θ
• Create time-invariant system matrices {Z, T, c, d,H,Q} using θ

Step 2 • Initialize the state mean a0 using one of the elements of θ
• Specify P0 = κI, where κ is a constant (10–100 times a0), and I

is an identity matrix

Step 3 Kalman filter

• For t = 1, . . . , N

◦ Create time-varying system matrices {Zt, Tt, ct, dt, Ht, Qt}
using θ and (t, Y t−k, Xt), k ≥ 1. Don’t use Yt as it is not
observed as yet.

Time update

◦ Compute at|t−1 using (3.1)

◦ Compute Pt|t−1 using (3.2)

◦ Compute the Kalman gain factor using (3.6)

Measurement update

◦ Obtain at using (3.3)

◦ Obtain Pt using (3.5)

Likelihood contribution

◦ Compute µt = Ztat|t−1 + ct

◦ Compute the forecast error et = Yt − µt. Use Yt in this
step only.

◦ Compute Σt = ZtPt|t−1Z
′
t +Ht

◦ Compute lt = −0.5[ln(det(Σt) + e′tΣ−1
t et)]

• Do next t
• Return LL = ΣNt=1lt. It is the likelihood function in (4.2) for

state space models.

(Continued)
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Table 4.1: (Continued)

Step 4 Maximum likelihood
Estimation

• Specify the starting values θ0

• Specify the tolerance 10−5

• Use BFGS algorithm to maximize LL
• BFGS returns the solution: the maximized LL∗, the parameter

values θ∗, and the Hessian H at convergence
• Check convergence

◦ Is the largest slope ∂LL
∂θi

across all the element of θ smaller
than the tolerance? If so, convergence is attained.

◦ If convergence failed,

� Relax tolerance till you find good θ0 and then
tighten it

� Specify different θ0 randomly
� Rescale (Yt, Xt) so that the elements of θ have

similar magnitudes; this fix is the most
important one.

� Use DFP or BHHH algorithm instead of BFGS to
maximize LL

� Use derivative-free methods to maximize LL and use
its solution as θ0

� Use EM algorithm to maximize E[LL] (see
Shumway and Stoffer [2011]) and use its solution as
θ0. That is because EM does not provide Hessian at
convergence, so standard errors unavailable, and
hence this ML step is required.

• Ensure different starting values do not yield larger LL∗

Inference

• Compute se(θ∗) = sqrt(diag(−H−1))
• Use se(θ∗) to obtain confidence intervals, t-values, and p-values.
• Use (4.6) to obtain robust standard errors, if desired

(Continued)
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Table 4.1: (Continued)

Selection

• Across multiple models (need not be nested),

◦ Repeat Kalman filter ML steps above

◦ Compute AIC, AICC, BIC in (4.7)

◦ Retain the model with the smallest score on a criterion

� If AIC, AICC, BIC all retain the same model, you
attained convergent validity

� If not, use BIC when dim(θ)/N is small; AIC when
dim(θ)/N is moderate; AICC when dim(θ)/N is large.

In (4.7), LL∗ denotes the maximized log-likelihood value, and K and N
are the number of parameters and sample size, respectively. All crite-
ria share the common tenet: improve goodness-of-fit and employ fewer
parameters. They operationalize goodness-of-fit by the maximized log-
likelihood value (that is, the first term) and impose a penalty for exces-
sive parameters (that is, the second terms in (4.7)).

In practice, we compute a score for each model and then the “best”
model is the one that attains the smallest score on an information
criterion. If the difference in scores on a criterion for any two models
exceeds 2, then the model with the larger score is rejected [Burnham
and Anderson, 2002, p. 70]. If all three criteria select the same model as
the best one, then we achieve convergent validity, which enhances our
confidence in the retained model. But if various criteria select different
models as the best one, we need to know which criterion to rely on to
retain a model. To this end, we note that AIC and AICC possess the
efficiency property; hence they perform better when models involve
many parameters and small sample sizes (that is, large K/N ratio).
Furthermore, AICC outperforms AIC as the K/N ratio increases. In
contrast, BIC possesses the consistency property; it performs better
when models involve few parameters and large sample sizes (that is,
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smallK/N ratio). Thus use BIC for smallK/N ratio; AIC for moderate
K/N ratio; and AICC for large K/N ratio. For further discussions
on the efficiency versus consistency properties, see McQuarie and Tsai
[1998, p. 3] and Naik et al. [2007, Remark 2].

Table 4.1 provides the flowchart for KF-ML estimation, inference,
and model selection. It also states the convergence criterion and sug-
gests ways to tackle the lack of convergence.



5
Optimal Control Theory

In the previous section, we learnt how to estimate the model param-
eters, assess their statistical significance, and select an appropriate
model describing the dynamic system. Using this information, we can
forecast the future outcomes of the unobserved states and the observ-
able dependent variables assuming that we know the course of actions
planned for the future. In this section, we will focus on how to deter-
mine the “best” future course of actions to drive the dynamic system
from the current states to the desired ones that attain certain goals
such as maximizing brand profit or consumer utility.

To fix ideas, consider a brand with current sales level x(t) that seeks
to maximize total profit. Let u(t) denote the advertising expenditure
at each time t. (Although I use “advertising” as the control variable
for exposition, state space models have been applied to other market-
ing mix variables such as price, promotions, salesforce size, distribution
intensity, detailing, sampling, paid search advertising, company-owned
Websites, or earned-media advertising (for example, Facebook likes),
or experience goods or logit demand models — (see Ataman et al.
[2008], Ataman et al. [2010], Montoya et al. [2010], Rutz and Bucklin

234
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[2011], Aravindakshan et al. [2015], Chintagunta and Rao [1996], Chin-
tagunta et al. [1993]). A brand manager can spend advertising dollars
over the planning horizon [t0, T ] in infinitely many ways, each plan
resulting in a different stream of profits. The best course of action —
the optimal advertising plan amongst numerous alternative ones — is
the one that maximizes the net present value of profit streams, given by
J(u(t)) =

∫ T
t0 e
−ρ(t−t0)[mx(t)− u(t)]dt+ S(x(T )), where ρ denotes the

discount rate, m is the price-cost margin, and S(·) represents the sal-
vage value function. The term [mx(t)−u(t)] measures the net profit at
each instant t; the integral computes its discounted sum; and the last
term evaluates the salvage value of the terminal sales level. Because
infinitely many alternative plans exist, the brand manager cannot enu-
merate all of them and sort over the net present value J(u) to find the
optimal ad spending plan that yields the largest J . (Although I use
“profit maximization” as the objective for exposition, not-for-profit
firms seek to attain other objectives, for example, balancing the short-
age and excess of blood collection (see Aravindakshan et al. [2015]).
Hence, we need a framework that offers constructive steps to obtain
u∗(t) that maximizes any J(u(t)) over all admissible trajectories of
u(t). To derive such a best course of actions, the optimal control the-
ory provides the constructive steps via Pontryagin’s maximum principle
or the Bellman’s optimality principle.

5.1 Pontryagin’s maximum principle

For the sake of exposition, we consider an infinite rather than finite
horizon problem, let x(t) denote the current state, u(t) be any admis-
sible control trajectory, and F (t, x(t), u(t)) be a general objective func-
tion that also explicitly depends on time, the control applied at time t,
and the resulting state. In the above sales example, F (t, x(t), u(t)) =
e−ρt[mx(t)−u(t)]. The decision-maker seeks a solution to the following
optimization problem:

Max
u(t)

J(u(t)) =
∫ ∞

0
F (t, x(t), u(t))dt, (5.1)
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subject to the state dynamics

dx(t)
dt

= g(t, x(t), u(t)), (5.2)

starting with x(0) = x0.
In the absence of control theory, one would need to solve the dif-

ferential Equation (5.2), substitute the solution x(t) = p(t, u(t), x0)
in (5.1) to eliminate x(t), then integrate F (t, p(t, u(t), x0), u(t)) from
zero to infinity so as to obtain J(u(t)) as a function of the control
trajectory, and then maximize it across infinitely many possible time
paths of u(t). Rather than resorting to such a direct maximization, we
invoke the Pontraygin’s Maximum Principle, which is simple to learn
and implement.

Let us abstract some important details for the sake of presenting
the essence of the maximum principle. Using the objective function
F (·) and the state dynamics g(·), we first construct the Hamiltonian
function as follows:

H = F + λg, (5.3)

where λ is known as the “co-state” or “adjoint” variable similar to
the Lagrange multiplier in static optimization. Then, the maximum
principle offers the following three first-order conditions:

∂H

∂u
= 0, (5.4)

∂H

∂λ
= dx(t)

dt
, (5.5)

∂H

∂x
= −dλ(t)

dt
. (5.6)

Equation (5.4) is the usual first-order condition with respect to the
decision variable (that is, the control variable u); Equation (5.5) recov-
ers the state dynamics in (5.2) because the left-hand side ∂H

∂λ = g(·)
upon differentiating (5.3); and Equation (5.6) specifies the evolution
of the co-state variable λ(t). The Hamiltonian in (5.3) and the triplet
Equations (5.4)–(5.6) solve the dynamic maximization problem stated
in (5.1) and (5.2).
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The elegance of the maximum principle lies in the construction of
the Hamiltonian function. The principle requires us to change our per-
spective: we do not view the dynamic optimization problem as dynamic;
rather we focus on the instantaneous static optimization of (5.3). It’s
analogous to viewing a video (dynamic) as a sequence of still shots
(static).

To emphasize this view, we suppress the time argument in (3.9) even
though the Hamiltonian is a function of time (both directly due to t in
F and indirectly due to (x(t), u(t), λ(t)). Then, for each instant t (that
is, a particular still shot), we construct a function — the Hamiltonian
viewed as frozen in time — by adjoining the dynamic constraint g(·)
to the objective function F (·). Then, we apply the static optimization
principles to maximize the objective F (·) at the instant t, taking into
account the constraint that represents instantaneous increase in the
“quantity” of the state variable due to g(·), and valuing this incremen-
tal state’s contribution by the associated “shadow price” λ. In other
words, the interpretation of the Hamiltonian function is that Hdt is
the total contribution to J when x(t) = x and u(t) = u over the small
interval (t, t + dt). And λ(t)dx is the valuation of the state’s contri-
bution to J Finally, we join the series of static optimization solutions
using the time path of the adjoint variable λ(t), which is obtained by
solving the differential equation in (5.6). Thus, this construction of the
Hamiltonian function decouples the overall dynamic optimization into
a series of static optimization problems (which are easier to solve).

The implementation of the maximum principle is easy. We first
construct the Hamiltonian function from the given objective function
and state dynamics, introducing an unknown variable λ(t). Focusing
on (5.3), we differentiate the Hamiltonian with respect to the control,
set it to zero, and solve for the “optimal control” as a function of the
state variable x(t), the co-state variable λ(t), and the model parame-
ters arising from (5.1) and (5.2). The resulting optimal control is not
fully characterized as yet because it depends on the unknown co-state
variable. To this end, we solve simultaneously the two differential equa-
tions — state and costate dynamics — induced by the optimal control
trajectory. The state dynamics (forward pass) begins from the initial
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condition x(0) = x0; the costate dynamics (backward pass) begins from
the terminal point λ(∞) = 0. Because the initial and terminal condi-
tions are fixed, the resulting problem is known as Two-Point Boundary
Value Problem (TPBVP). Analytical closed-form solutions to TPBVPs
are rarely available, requiring the use of numerical methods (for which
readers are directed to Lapidus and Pinder [1999], Smith [2003], and
Naik et al. [2005]). Furthermore, if the planning horizon were finite
(for example, Raman [2006] and Bass et al. [2013]), then the termi-
nal value λ(T ) = ∂S(x(T ))

∂x , where S(x(T )) furnishes the salvage value
of the terminal state. Substituting the state and costate solutions in
the Hamiltonian maximizing optimal control, we fully characterize the
best course of action to attain the goal in (5.1) subject to the state
dynamics in (5.2). Finally, the second-order conditions for optimality
requires the maximized Hamiltonian to be concave in x for each λ and
t, and salvage function S(x) be concave in x (for weaker requirements,
see Seierstad and Sydsaeter [1977]).

The above exposition abstracted important details such as conti-
nuity of the functions, transversality conditions, state and/or control
constraints among others, which can be found in the lucid tutorial
by Sethi and Thompson [1981] and the classic books by Kamien and
Schwartz [2012] and Sethi and Thompson [2000]. These latter books
also provide several applications of the optimal control theory to eco-
nomics, management science, finance, and marketing.

5.2 Bellman’s principle of optimality

The Hamiltonian approach splits the overall dynamic optimization
in (5.1) and (5.2) into static optimization problems one for each instant
t, constructs the Hamiltonian function, and determines the optimal
solution by solving simultaneously the state and costate differential
equations as a two-point boundary value problem. In contrast, the Bell-
man approach splits the overall dynamic optimization into two periods
from (t0, t0+∆t) and (t0+∆t,∞) — rather than a sequence of instanta-
neous static problems — constructs the Value function, and determines
the optimal solution by solving one partial differential equation known
as the Hamilton–Jacobi–Bellman (HJB) equation.
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For the sake of presenting the essence of the Bellman approach, let
us define the Value function as follows:

V (t0, x0) = Max
u(t)

∫ ∞
t0

F (t, x(t), u(t))dt, (5.7)

subject to the state dynamics in (5.2). Equation (5.7) denotes the maxi-
mized value of J(u∗(t)) in (5.1) under the optimal control u∗(t) starting
from the initial time t0 when the state level is x0 We can split this over-
all maximization into two periods to obtain

V (t0, x0) = Max
u(t)∈(t0,t0+∆t)

∫ t0+∆t

t0
F (t, x, u)dt

+ Max
u(t)∈(t0+∆t,∞)

∫ ∞
t0+∆t

F (t, x, u)dt, (5.8)

Then, the principle of optimality states that the solution in the second
period starting from (t0 + ∆t,∞) remains optimal starting from any
state arrived at (x0 + ∆x) from the actions in the first period (t0, t0 +
∆t). Consequently, the solution for the second period problem is given
by the value function,

V (t0 + ∆t, x0 + ∆x) = Max
u(t)∈(t0+∆t,T )

∫ ∞
t0+∆t

F (t, x, u)dt

Applying this principle, we re-express (5.8) as

V (t0, x0) = Max
u(t)∈(t0,t0+∆t)

{∫ t0+∆t

t0
F (t, x, u)dt+ V (t0 + ∆t, x0 + ∆x)

}
,

(5.9)
and focus on finding the optimal course of actions in the first period.
(This notion — solve the last period first and then solve the earlier
periods sequentially — is known as the Backward Induction.)

To solve the first period problem, for small ∆t → 0, note that
the first term on the right-hand side of (5.9) can be approximated by∫ t0+∆t
t0

F (t, x, u)dt ≈ F (t0, x0, u)∆t. The second term V (t0 + ∆t, x0 +
∆x) can be approximated by Taylor series as V (t0 + ∆t, x0 + ∆x) ≈
V (t0, x0) + Vt(t0, x0)(t0 + ∆t − t0) + Vx(t0, x0)(x0 + ∆x − x0), where
Vt(t0, x0) = ∂V (t0, x0)/∂t and Vx(t0, x0) = ∂V (t0, x0)/∂x. Substituting
them in (5.9) and canceling V (t0, x0) from both sides, we get 0 =
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Maxu{F (t0, x0, u)∆t+Vt(t0, x0)∆t+Vx(t0, x0)∆x}. By rearranging the
last expression, dividing throughout by ∆t and taking limits as ∆t→ 0,
and noting that ∆x/∆t = dx/dt = g(t, x, u) from (5.2), we obtain the
HJB equation, which is also known as the Bellman equation:

−V t(t, x) = Max
u
{F (t, x, u) + Vx(t, x)g(t, x, u)}. (5.10)

We dropped the zero subscript in (5.10) since we are at the initial
condition looking forward at the vanishingly small first period ∆t→ 0.
Because Equation (5.10) involves time and state derivatives, it is a
partial (as opposed to ordinary) differential equation that the value
function V (t, x) obeys.

To implement the Bellman approach in practice, we take the follow-
ing steps. First, apply the static optimization principles to maximize
the parenthetical term in (5.10) with respect to u; then obtain the
optimal u∗ as a function of (t, x, Vx) and substitute it back in (5.10)
so as to remove the max operator (because the HJB is now driven
by the maximizing control); next solve the partial differential equa-
tion: −V t(t, x) = F (t, x, u∗(t, x, Vx)) + Vx(t, x)g(t, x, u∗(t, x, Vx)); and
finally differentiate the resulting solution V (t, x) with respect to x to
obtain Vx(t, x) and substitute this result in u∗(t, x, Vx) to yield the
optimal control u∗(t, x). In most economics and marketing problems,
the objective function F (t, x, u) takes the separable form e−ρtf(x, u);
consequently the optimal control depends only on the state such as
u∗(x).

As before, this exposition abstracted important details that can
be found in Kamien and Schwartz [2012], Sethi and Thompson [2000],
Dockner et al. [2000], and Jørgensen and Zaccour [2004]. They also
provide several applications in the context of discrete-time, stochastic
dynamics, or competitive markets.

5.3 When to use which approach?

The answer depends on the context of the problem. But first, we
need to appreciate that the Hamiltonian and Bellman approaches are
intimately connected with each other and with the classical calculus
of variation problem alluded in Section 1. Specifically, the “splendid”
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problem as Leibnitz calls it and proposed by Bernoulli can be expressed
as maximizing the integral

∫∞
0 F (t, x(t), x′(t))dt with respect to the tra-

jectory x(t) subject to the initial and terminal conditions. Note that the
integrand involves both the level and slope x′ = dx/dt. This formidable
problem is a special case of the Hamiltonian approach when we replace
Equation (5.2) with dx/dt = g(t, x, u) = u(t). Then by applying the
maximum principle via (5.4)–(5.6), we recover the optimal solution,
which is identical to the one obtained via the celebrated Euler equa-
tion. In other words, the calculus of variation problem is nested in
the Hamiltonian approach with state dynamics driven by the control
linearly.

Next, to see the equivalence between the Hamiltonian and Bell-
man approaches, compare Equation (5.3) with the right-hand side
of (5.10) to equate λ(t) and Vx(t, x). Now differentiate the HJB equa-
tion −V t(t, x) = F (t, x, u∗) + Vx(t, x)g(t, x, u∗) with respect to x to
obtain

−V tx(t, x) = Fx(t, x, u∗) + Vxx(t, x)g(t, x, u∗) + Vx(t, x)gx(t, x, u∗)

−[Vtx(t, x) + Vxx(t, x)g(t, x, u∗)] = Fx(t, x, u∗) + Vx(t, x)gx(t, x, u∗),
(5.11)

where the double subscripts denote the second partial derivatives.
Equation (5.11) reveals an insight: its left-hand side equals Vtx(t, x) +
Vxx(t, x)dx/dt = ∂V x(t,x)

∂t = dλ
dt , whereas its right-hand side equals

Fx(t, x, u∗) + λ(t)gx(t, x, u∗) = ∂H
∂x since H = F + λg by construction.

Thus Equation (5.11) implies −dλ
dt = ∂H

∂x , which is none other than the
co-state equation in (5.6)! In other words, by equating the costate vari-
able λ(t) with the marginal value function Vx(t, x), we arrive at the first-
order condition of the maximum principle (Equation (5.6)). In addition,
we reaffirm the interpretation of costate variable λ(t) as “shadow price”
because it equals the marginal contribution due to incremental state
changes (that is, Vx). Thus the Hamiltonian and Bellman approaches
lead us to the same summit of the Everest, but from two different sides:
the paths differ, but attain the same peak.

The paths differ conceptually. The Hamiltonian approach provides
the optimal control u∗(t) as a function of time, a solution referred to as
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“open-loop.” Whereas the Bellman approach provides the optimal con-
trol u∗(x) as a function of state, a solution referred to as “closed-loop.”
The open-loop solution is invaluable for planning the future course
of actions; it implies commitment to stay the course; and it is proac-
tive. In contrast, the closed-loop solution is invaluable for responding to
alternative states; it implies flexibility to accommodate feedback from
whatever the current state is (optimal or not); but it is reactive.

To exemplify the open loop strategy, envision the associate dean’s
task of scheduling courses/instructors over various quarters of the next
year; or hundreds of millions of dollars that companies spend on media
buys in the upfront market a year in advance [Tellis, 1998, Belch and
Belch, 2004]. To illustrate the closed loop strategy, imagine the dean’s
task of making a retention offer in wake of counter-offers to a faculty
member from competing schools; or hundreds of millions of drivers who
use global positioning system like Garmin to navigate via the initial
route guidance (that is, open-loop plan) and then “re-calculating” a
revised route (that is, closed-loop) based on the current state resulting
from a missed exit or turns in the original plan.

In practice, consider using the Hamiltonian approach for making
proactive plans over time, for example pricing strategy [Kalish, 1983]
or media plans [Naik and Raman, 2003]. The Bellman approach is
better suited to tackle competition in dynamic markets [Naik et al.,
2005, 2008] or dynamic continuous uncertainty [Raman and Chatterjee,
1995, Raman and Naik, 2004] or dynamic discrete uncertainty [Rubel
et al., 2011]. Both the approaches handle continuous-time (as above)
and discrete-time formulations (for details, see Appendix B in Sridhar
et al. [2011]). We next illustrate how to apply the two approaches to
solve dynamic marketing problems.



6
Marketing Applications

We present the applications of Optimal Control Theory, Differential
Games Theory, and Stochastic Control Theory using three examples
from the recent marketing literature. The first example solves an opti-
mal control problem for deterministic dynamics under single state and
two controls; the second analyzes dynamic competition between two
brands that use advertising to control awareness dynamics; the third
example examines the impact of discrete uncertainty due to product
harm crisis looming on the horizon.

6.1 Multimedia allocation: optimal control theory

This example is based on Naik and Raman [2003], who study the alloca-
tion of advertising budget to N -media activities. For brevity, consider
advertising on two media u1(t) and u2(t) that grows brand sales over
time as follows: dx

dt = β1
√
u1 + β2

√
u2 + κ

√
(u1u2) − δx. The square

root function captures the notion of diminishing returns to advertis-
ing, which means the impact of advertising increases at a decreasing
rate. The parameter κ denotes the synergy between two media: the
effectiveness of each medium increases in the presence of the other

243
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media. The parameter δ represent the attrition of sales in the absence
of advertising.

The brand manager wants to maximize the net present value of
the profit stream over infinite horizon, which is given by J(u1, u2) =∫∞

0 e−ρt(mx(t)− u1(t)− u2(t))dt. The parameter m indicates the
price-cost margin in each unit of sales, and ρ denotes the discount
rate of the forward-looking manager. A large (small) ρ corresponds to
a manager who is more (less) impatient and present-oriented (future-
oriented). There are infinitely many admissible trajectories of ui(t) ∈
(0,∞), i = 1, 2, each resulting in some net present value J(u1, u2) of the
discounted profit stream. Our task is to find dynamically optimal tra-
jectories that yield the largest net present value J(u∗1, u∗2), taking into
account cross-media synergy, ad effectiveness, sales carryover effect,
product margin, and discount rate.

To this end, let us apply the Maximum Principle. We first construct
the Hamiltonian H = F + λg and re-express it as the “current value”
Hamiltonian H̃ = eρtH. Then H̃ = (mx − u1 − u2) + λ̃(β1

√
u1 +

β2
√
u2 + κ

√
u1u2 − δx), where the current value co-state λ̃ = eρtλ. We

then use Equation (5.4) to find the Hamilton-maximizing controls by
differentiating H̃ with respect to the two controls (u1u2). Specifically,
∂H̃
∂u1

= −1 + λ̃(β1+κ
√
u2)

2
√
u1

, which when set to zero yields 2
√
u1 = λβ1 +

λ̃κ
√
u2. Similarly, ∂H

∂u2
= 0 yields 2

√
u2 = λβ2 + λ̃κ

√
u1. By solving

these two linear simultaneous equations in (
√
u1,
√
u2), we find the

optimal controls as u∗i = [2λ̃βi + λ̃2κβj)/(4− 2λ̃2κ2)]2.
Next, to eliminate the current costate variable λ̃, we do a little bit

of algebra and translate Equation (5.6) to dλ̃
dt = ρλ̃− ∂H̃

∂x = ρλ̃− [m+
λ̃(−δ)] = (ρ + δ)λ̃ −m. A stable solution is given by λ̃ = m/(ρ + δ)
Finally, we substitute it in u∗i = [2λ̃βi + λ̃2κβj)/(4− 2λ̃2κ2)]2 to obtain
the optimal spending on each of the two media as a function of all
model parameters in closed-from. Thus we determine the total budget∑
u∗i and the optimal allocation ratio u∗1/u∗2. For details, see Naik and

Raman [2003].
They further generalize these results to N media. But more impor-

tantly, first, using market data on sales and advertising, they furnish
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evidence on the existence of synergy κ empirically. Second, using com-
parative statics, they discover the counter-intuitive result: as synergy
increases, the optimal allocation ratio tilts in the favor of the less effec-
tive medium. That is, the marginal dollar should be allocated to the
weak medium (rather than the stronger one). This result in the pres-
ence of synergy is in stark contrast with the one in the absence of
synergy that suggests a larger budget should be allocated to the more
effective medium (see Dorfman and Steiner [1954]).

6.2 Competitive models: differential games theory

This example is based on Naik et al. [2008], who study the role of
competition when mature brands advertise to build awareness. They
study a general model of N brands competing to build awareness over
time in the presence of marketing expansion and confusion effects (own
advertising builds awareness of other brands), providing both empirical
parameter estimation and analytical closed-form solutions. For illus-
trating the Bellman approach, however, let us examine a simple case
of two symmetric brands (that is, equally strong brands with identi-
cal parameters), who compete for market share, as in Sorger [1989] for
example, where own advertising u1(t) and competitive advertising u2(t)
influence market shares over time as follows: dm1

dt = βu1(t)
√

1−m1(t)−
βu2(t)

√
m1(t), and dm2

dt = βu2(t)
√

1−m2(t) − βu1(t)
√
m2(t). These

equations state that own brand’s share grows because own advertis-
ing acts on the consumers of the other brand, and own brand share
decreases because competitive advertising steals share proportional to
own market share. The parameter β denotes ad effectiveness. When
we add both the equations, we see that dm1

dt + dm2
dt = 0 and hence the

logical consistency property m1(t) +m2(t) = 1 for every t holds.
A brand manager wants to maximize the net present value J(ui) =∫∞

0 e−ρt(Rmi(t)− c(ui(t)))dt. The parameter ρ denotes the discount
rate of the forward-looking manager; R indicates the category revenues
per unit share; and c(ui) = u2

i is the convex cost function. The convex
costs in the objective function are equivalent to diminishing returns in
the state dynamics; see details in Naik et al. [2008, p. 135].
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Unlike the previous example, the brand manager i, i = 1, 2, has
only one control (own advertising), and s/he competes with the
other brand manager to gain a larger market share. Each one seeks
to maximize own net present value J(ui) taking into account the
other brand’s best course of action u∗−i subject to the market share
dynamics resulting from the mutual decisions. There are infinitely
many admissible trajectories of u(mi) ∈ (0,∞), and our task is to find
the dynamically optimal response such that neither brand manager
has any unilateral incentive to alter the course of action. This solution
concept is known as the Markov Perfect Nash equilibrium [Başar and
Olsder, 1999], and it explores all closed-loop strategies in continuous
time and continuous state.

To discover the optimal strategy, let us apply the Bellman’s
principle of optimality. We first construct the value function
V (m0i) = Max J(ui) starting from any initial state m0i. The objec-
tive function is separable in the time argument, that is, V (m) =
Max

∫∞
0 F (t,m, u)dt = Max

∫∞
0 e−ρtf(m,u)dt. Hence, upon differenti-

ating with respect to time, ∂V∂t = (−ρ)V (m). Furthermore, we only need
one co-state variable in the value function because m1(t) +m2(t) = 1.
Consequently, for brand 1, the HJB equation in (5.10) becomes

ρV1 = Max
u1

{[
Rm1 − u2

1

]
+ Vm1

[
βu1
√

1−m1 − βu2
√
m1

]}
.

Similarly, for brand 2,

ρV2 = Max
u2

{[
Rm2 − u2

2

]
+ Vm2

[
βu2
√

1−m2 − βu1
√
m2

]}
.

Here Vmi = ∂V/∂mi.
Next, to eliminate the max operator, let us differentiate the

term in the curly brackets with respect to u1 and obtain (−2u1 +
Vm1β

√
1−m1), which when set to zero yields the “Hamilto-

nian” maximizing control u∗1 = 0.5V m1
β
√

1−m1. Similarly, we get
u∗2 = 0.5V m2

β
√

1−m2.
If we knew Vmi as a function of the model’s parameters, then we

would have determined the feedback control that depends on the cur-
rent state (that is, share mi). To this end, we conjecture that a linear
value function satisfies the Bellman equation. (Although we skip it here,
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this conjecture can be verified as true.) Given symmetric brands, we
let the value function V (mi) = a + bmi so that Vmi = b, where (a, b)
depend on the parameters of model dynamics and profit function.

Then, we substitute the resulting u∗1 = 0.5bβ
√

1−m1, u
∗
2 =

0.5bβ
√

1−m2, and V (mi) = a + bmi in the HJB equation ρV1 =
[Rm1 − u2

1] + Vmi [βu1
√

1−m1 − βu2
√
m1]. Upon simplification and

equating the coefficients on both sides of the value function, we find
that a = β2b2/(4ρ), and the positive root of the quadratic equation in
b is given by b = (−2ρ +

√
4ρ2 + 12Rβ2)/(3β2), thereby fully char-

acterizing the conjectured value function V (mi) = a + bmi. Thus,
the dynamically optimal closed-loop (that is, feedback) Nash equilib-
rium strategy for each brand i is given by u∗(mi) = α

√
1−mi, where

α = (−2ρ+
√

4ρ2 + 12Rβ2)/(6β).
Because optimal advertising in competitive and dynamic markets

follows u∗(mi) = α
√

1−mi, we learn the counter-intuitive result
known as the Inverse Allocation Principle: The smaller the market
share, the larger the advertising.

Jones [1986, 1990] furnishes empirical evidence to corroborate this
inverse allocation principle, noting that “. . . for large brands, the mar-
ket share normally exceeds the advertising share; for smaller brands,
the opposite is true” Jones [1986, p. 100]. Furthermore, the inverse allo-
cation principle is not the consequence of our simplifying assumption
of symmetric brands; it holds in more general settings with asymmetric
brands as well as in the presence of N -brand oligopoly of asymmetric
brands, market expansion, and confusion effects (see the closed form
analytical results in Naik et al. [2008]).

Substantively, this allocation principle is opposite of the competitive
parity method recommended in textbooks. Specifically, the competitive
parity method requires matching the ratio of own advertising to mar-
ket share with that of the other brand, thereby suggesting that larger
(smaller) brands should spend more (less) on advertising. In con-
trast, this inverse allocation principle advises managers to build dom-
inant brands because they would face less competitive resistance in
the long run and thus will able to reduce advertising. From a life-
cycle perspective, small up-and-coming brands should spend more on
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advertising, whereas mature brands may “fly on auto pilot” without
much advertising and instead rely on the momentum of brand pur-
chases and positive consumption experience.

6.3 Dynamic uncertainty: stochastic control theory

Both the above examples assume that the state dynamics are determin-
istic, that is, not perturbed by random events over time. To introduce
uncertainty in continuous time, we perturb the state dynamics using
the Brownian motion, known as the Wiener process and denoted by
W (t), whose time increment dW follows a normal distribution with
zero mean and unit variance. The resulting stochastic state dynamics
is expressed by dx = g(t, x, u)dt + σdW . When σ = 0, we recover the
usual ordinary differential equation as in (5.2). To incorporate the effect
of uncertainty in optimal control strategy, the standard HJB equation
in (5.10) becomes

−V t(t, x) = Max
u
{F (t, x, u) + Vx(t, x)g(t, x, u) + 0.5σ2Vxx},

where Vxx = ∂2V/∂x2. Thus the presence of uncertainty transforms
the usual HJB Equation (5.10) from a first-order partial differential
equation to a second-order partial differential equation.

In Marketing, applying this stochastic HJB equation, Raman and
Chatterjee [1995] study optimal pricing under demand uncertainty;
Prasad and Sethi [2009] examine the optimal budgeting and alloca-
tion for integrated marketing campaigns in the presence of cross-media
synergy and multi-brand competition; Raman and Naik [2004] inves-
tigate the long-term profit impact of integrated marketing communi-
cations programs; among others. For discrete-time stochastic control
problems, Esteban-Bravo et al. [2014] study how to allocate budgets
optimally in a customer relationship management application using
stochastic dynamic programming approach.

The continuous-time uncertainty via the Wiener process W (t)
represents small shocks at each instant whose net impact, on average,
is zero. In contrast, the possibility of product harm crisis induces
uncertainty of a discrete event, whose net impact is often not zero
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(see, for example, van Heerde et al. [2007], Liu and Shankar [2015],
and Kalaignanam et al. [2013]). To study uncertainty from such rare
catastrophic events, Rubel et al. [2011] present a general framework
to incorporate shocks that are large and discrete rather than small
and continuous. The resulting dynamic model augments the above
control-theoretic models by introducing a random stopping problem,
thereby paving the way to study optimal decisions in the presence of
rare but catastrophic events.

Consider a product harm crisis that strikes at an unknown instant
T in the future with probability χ given that it has not occurred as
yet. When it occurs, the planning horizon splits into two regimes: pre-
crisis regime [0, T ) and post-crisis regime [T,∞). Brand sales grow
according to the dynamics dS/dt = βj

√
uj(t)

√
M(t)− S(t) − δjS(t),

where j = (1, 2) denote the pre- or post-crisis regimes,M(t) is the time-
varying market potential for the brand, and (βj , δj) are ad effectiveness
and attrition rate in regime j, respectively. This equation says that
advertising acts on the untapped market (M −S), ad spending via

√
u

captures the diminishing returns, and brand sales decay proportional
to its level in the absence of advertising.

At t = 0 the initial sales is S0, When the crisis occurs at t =
T , the prevailing sales level incurs a “damage.” Consequently, brand
sales right after the crisis is S(T+) = (1− φ)S(T−), where S(T+) and
S(T−) represent sales just after and before the crisis, and the fraction
φ denotes the damage rate: the larger the damage rate, the sharper the
drop in the baseline sales.

The net present value of the stream of profits from the pre-crisis
regime is J(u1) =

∫ T
0 e−ρtπ(S(t), u1(t))dt and from the post-crisis

regime is J(u2) =
∫∞
T e−ρtπ(S(t), u2(t))dt, where ρ is the discount rate,

and π(S, u) = mS−u yields the instantaneous profit with marginm per
unit sales. Because the crisis event occurs at the random time T , the
profit integrals J(u1) and J(u2) are random variables, rendering this
formulation a stochastic control problem. The brand manager wants to
maximize the total profit J(u1, u2) = E[J(u1) + e−ρTJ(u2)], where the
expectation is evaluated over all possible crisis times T ∈ (0,∞) after
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discounting J(u2) back to the initial time t = 0 because the post-crisis
net “present” value accrues at time T .

By applying integration by parts to this random stopping problem
(because the first regime “stops randomly” when the crisis occurs),
Rubel et al. [2011] evaluate the profit expectation analytically to show
that J(u1, u2) =

∫∞
0 e−(ρ+χ)t{π(S, u1) + χJ(u2)}dt. Note that the dis-

count factor increases from ρ to (ρ+χ), revealing a novel insight: crisis
anticipation enhances impatience.

Having evaluated the profit expectation in closed-form, we can now
apply the standard control theory to maximize J(u1, u2) with respect
to the decision variables (u1, u2). We apply the Bellman approach to
find optimal feedback advertising strategies, which possess the desir-
able property of subgame perfectness. That is, the optimal advertis-
ing spending is optimal not only when sales evolve along the opti-
mal state trajectory, but also when sales depart from the optimal
trajectory at any time. This property is also known as Markov per-
fectness or strong time consistency (see Başar and Olsder [1999]).
Appendix in Rubel et al. [2011] provides the details of solving the
HJB equation to obtain closed-form results. The resulting optimal
feedback advertising strategy in each regime j is given by u∗j (S) =
(M − S)(0.5βλj)2, where λ2 = (−2(ρ+ δ2) + 2

√
(ρ+ δ2)2 +m2β2

2)/β2
2

and λ1 = (−2(ρ+δ1+χ)+2
√

(ρ+ δ1 + χ)2 + (m1 + χ(1− φ)λ2)β2
1)/β2

1 .
Because u∗(S) ∝ (M − S), contrary to the proportional-to-sales

heuristic in textbooks, the optimal strategy recommends the inverse
allocation principle: managers should spend more when sales are low
and less when sales are high. That is, advertise intensively when the
untapped market is large.

More importantly, to gain understanding of the effects of crisis like-
lihood χ, Figure 6.1 illustrates the optimal sales and advertising trajec-
tories in the presence of low and high crisis likelihood. First, it shows
that the pre-crisis advertising is small for high χ at every t < T . Sec-
ond, at the crisis time T , advertising increases to recover the drop in
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Figure 6.1: Crisis likelihood effects on sales and advertising trajectories.

baseline sales. Third, the post-crisis advertising is large for high χ at
every t > T . Thus, we analytically discover the crossover interaction:
u1 decreases but u2 increases when managers anticipate crisis. Why?
Because they should conserve resources now to recover sales later.



7
Conclusion

The purpose of this primer is to introduce broad principles for solving
any dynamic marketing problem. To this end, I elucidated four prin-
ciples: the Kalman Filter, Fisher’s Likelihood Principle, Pontryagin’s
Maximum Principle, and Bellman’s Optimality Principle. These princi-
ples are general and apply in all dynamics contexts (for example, linear
or nonlinear, deterministic or stochastic, discrete- or continuous-time,
discrete- or continuous-state) because they do not depend on a spe-
cific model specification or data sets. Hence they hold not only across
all dynamic marketing models — extant and future — but also across
disciplines such as physics, engineering, economics, or management sci-
ence. Given this generality, readers should learn to master the use of
these principles.

The first two principles — the Kalman filter and the Likelihood
Principle — allow us to estimate the parameters of the dynamic sys-
tem that specifies relations among current states, past states, actions,
and outcomes. The Kalman filter provides the means and covariances
of the unobserved state vector recursively, that is, as the observed data
on outcomes and actions unfold over time. When the dynamic sys-
tem is linear, the Kalman filter is the optimal filter not just when the

252
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errors terms are normally distributed, but also when the errors follow
any non-normal distribution with finite first two moments. When the
dynamic system is non-linear, the Kalman filter is still the optimal filter
within the class of all linear estimators. Other nonlinear estimators, for
example EKF, Particle Filter, or Unscented KF, are sub-optimal but
may improve performance at the expense of extra computational costs.

Using the means and covariances of the unobserved state vector
from the Kalman filter, one can next compute the likelihood function
for scalar or multivariate time-series, with or without missing values,
equally or irregularly spaced observations, random and/or time-varying
parameters, and discrete- or continuous-time models. To apply Fisher’s
likelihood principle, we maximize the likelihood function with respect
to the model parameters to obtain the best parameter estimates, where
the “best” refers to the most precise estimates (that is, least variance)
in the class of all unbiased estimators. Not only the precision of the
parameter estimates, but also their cross-correlations across estimated
parameters are obtained from the curvature of the likelihood function
(that is, negative inverse of the Hessian matrix).

If multiple dynamic systems are estimated, then we score them
using information criteria (for example, AIC, AICC, BIC) and retain
the model associated with the smallest score. Information criteria bal-
ance the trade-off between fidelity (that is, improving the goodness-
of-fit) and parsimony (that is, employing fewer parameters). If these
criteria point to the same model as the best one, then the resulting
convergent validity enhances our confidence in the retained model. But
if these criteria indicate different models as the best one, then use BIC
for small K/N ratio; AIC for moderate K/N ratio; and AICC for large
K/N ratio.

Having estimated and retained the best dynamic system that cor-
roborates with market data (that is, descriptive phase), we next seek
prescriptive or normative answers to managerial questions: how should
managers optimally spend hundred million dollars over time to adver-
tise a brand, or whether 100 million is the “right” sum, how to allocate
it across geographic regions or multiple media? To this end, we need to
specify the objective function in addition to the dynamic system and
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then apply either the Maximum Principle or the Optimality Principle
to obtain the best course of action or competitive response, respectively.

The Pontryagin’s Maximum Principle yields open-loop plans, which
are proactive and require commitment over time. It views the dynamic
optimization as a sequence of static problems, one for each instant t,
constructs the Hamiltonian function, and determines the optimal solu-
tion by solving simultaneously the state and costate differential equa-
tions as a two-point boundary value problem. It yields the best course
of action in terms of total marketing budget and its allocation over
time.

In contrast, the Bellman’s Optimality Principle yields closed-loop
plans, which are reactive and offer flexibility over time. It splits the
dynamic optimization into current period and distant future — rather
than a sequence of static problems as in the maximum principle —
constructs the Value function, and determines the optimal solution by
solving a partial differential equation known as the Hamilton–Jacobi–
Bellman (HJB) equation. It yields the best competitive response or
course correction in terms of total marketing budget and its allocation
over time.

Both principles are powerful because they reveal insights that can-
not be established numerically. For example, consider the counter-
intuitive insights from Section 6:

• as synergy increases, more than fair share of marginal advertising
dollar should be allocated to the weaker medium rather than the
stronger one;

• in competitive markets, advertising spending is inversely propor-
tional to own market share;

• when anticipating crisis, managers should decrease pre-crisis
advertising and increase post-crisis advertising to conserve
resources now and recover sales later.

These three insights are analytically proven, which means they hold
true for every permissible value of all the model parameters (not just
the estimated parameter values based on a specific data set). Numerical
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solutions can never be verified “for every parameter value of all the
model parameters” because the parameter space is infinite dimensional.
Hence control theory complements the estimation theory and, together,
they enable researchers to discover general marketing insights.

In this primer I did not discuss dynamic models with discrete-valued
unobserved states. For example, consider the advertising driven sales
evolution St = λSt−1 + βut + νt as in Equation (2.1), but now imag-
ine that the ad effectiveness and carryover effect (β, λ) differ during
economic expansions and contractions. The two discrete states of the
economy — expansion and contraction — not only are unobserved in
the data, but they also exhibit dynamics: expansion in period t is likely
to be followed by an expansion in period t+1 with probability p, while
recessionary economy stays in the contraction state with probability
q. Indeed, expansion switches to contraction with probability (1 − p)
and so does contraction to expansion with probability (1− q). To esti-
mate the parameters (β1, λ1) during expansion, (β2, λ2) during con-
traction, the likelihoods of recession (1 − p) and recovery (1 − q), we
need a continuous-valued observation equation in the state space model
Equation (2.22) for the observed sales and a discrete-valued transi-
tion Equation (2.23) for the unobserved states. The resulting model
is called the Hidden Markov Model (HMM). The model parameters
can be estimated using either maximum-likelihood or EM algorithm or
Bayesian estimation (see Zucchini and MacDonald [2009] for details).
For the application of the EM estimation for this advertising example,
see Smith et al. [2006]. For an application of the Bayesian estimation
in a customer relationship context, see Netzer et al. [2008]. Besides
parameter estimation and inference in HMMs, three central problems
in HMMs are as follows: (i) determining the number of states (for exam-
ple, are the hidden states boom and bust, or boom, slump and bust?);
(ii) determining the optimal sequence of state evolution (for example,
was it boom → bust → slump or boom → slump → bust); and (iii)
determining the optimal control of HMMs (for example, how should
we optimally advertise u∗t in each of the boom, bust, slump regimes?)
Problem (i) is tackled in Smith et al. [2006], who derived the Markov
Switching Criterion to not only select the number of hidden states
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optimally, but also retain the variables parsimoniously in a regression
model in each of the selected states. Problem (ii) is classic and its solu-
tion is provided by the Viterbi algorithm. General techniques to solve
Problem (iii) are presented in Elliott et al. [1995].

I close by recommending further readings beyond this primer. For
Kalman filtering, see Jazwinski [2007], Anderson and Moore [2012],
and Simon [2006]. For parameter estimation, see Harvey [2001] for
ML estimation, Harrison and West [2013] for Bayesian estimation, and
Shumway and Stoffer [2011] for EM estimation. For optimal control
theory, see Bryson and Ho [1975], Sethi and Thompson [2000], Kamien
and Schwartz [2012], and Weber [2011]. For differential games, see Jør-
gensen and Zaccour [2004] and Dockner et al. [2000]. For stochastic cal-
culus, see Malliaris and Brock [1982] and Grigoriu [2002]. For stochastic
control, Dixit and Pindyck [1994, Part II] and Astrom [2006]. Finally,
for numerical solutions to control problems, see Lapidus and Pinder
[1999] and Smith [2003] who present powerful tools to solve partial
differential equations using finite difference methods.
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