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Inverse regression methods facilitate dimension-reduction analyses of high-dimensional data by extracting a small number of factors that
are linear combinations of the original predictor variables. But the estimated factors may not lend themselves readily to interpretation
consistent with prior information. Our approach to solving this problem is to first incorporate prior information via theory- or data-driven
constraints on model parameters, and then apply the proposed method, constrained inverse regression (CIR), to extract factors that satisfy
the constraints. We provide chi-squared and t tests to assess the significance of each factor and its estimated coefficients, and we also
generalize CIR to other inverse regression methods in situations where both dimension reduction and factor interpretation are important.
Finally, we investigate CIR’s small-sample performance, test data-driven constraints, and present a marketing example to illustrate its use
in discovering meaningful factors that influence the desirability of brand logos.
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1. INTRODUCTION

An important goal in dimension-reduction analysis is to
project high-dimensional data onto low-dimensional subspaces
without loss of information. To attain this goal, applied re-
searchers, scientists, and engineers often apply principal com-
ponents analysis (PCA) to extract a few significant factors that
are linear combinations of the original predictor variables. After
factor extraction, they interpret these factors in light of prior
knowledge. Because factors extracted by PCA often lack mean-
ingful interpretation in this context, the researcher rotates the
estimated factors to fit a simple structure (see Darton 1980).
The concept of simple structure, as defined by the eminent psy-
chologist Thurstone (1947, chap. 14), entails grouping one set
of similar predictors into one factor, another set into another
factor, and so on, thus resulting in a specific constraint matrix
based on substantive or theoretical considerations. The purpose
of this article is to extend inverse regression methods for ex-
tracting factors (e.g., Li 1991; Cook and Weisberg 1991; Cook
and Lee 1999; Bura and Cook 2001a; Bura 2003; Cook and
Setodji 2003; Li, Aragon, Shedden, and Agnan 2003) by incor-
porating this constraint information so that the resulting factors
conform to researchers’ prior knowledge.

Previous research has investigated the problem of estimat-
ing parameters in the presence of given constraints. For ex-
ample, Searle (1971, sec. 5.6) and Hocking (1996, chap. 3)
discussed constrained linear regression models, and Seber and
Wild (1989, app. E) provided an algorithm to estimate parame-
ters subject to given constraints in nonlinear regression mod-
els. Extending PCA, Takane, Kiers, and de Leeuw (1995) and
Takane and Shibayama (1991) showed how to incorporate prior
information via given constraints. In these studies, the “given”
constraints constitute an inherent part of the model itself and
are “not [viewed] as hypotheses to be tested but as a fact, with-
out question” (Searle, 1971, p. 205). We note that constrained
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regression models do not reduce the dimensionality of the space
of predictor variables (unlike PCA), whereas the PCA approach
ignores the role of dependent variables during factor extrac-
tion (unlike constrained regression models), resulting in an er-
roneous elimination of predictive factors (Li et al. 2003; Naik,
Hagerty, and Tsai 2000). In contrast, inverse regression meth-
ods simultaneously reduce the dimensionality of the predictor
variable space and incorporate the role of dependent variables.
Furthermore, inverse regression does not require an explicit
knowledge of the functional form that links a dependent vari-
able to the factors (i.e., the so-called “link function”), thus mit-
igating potential misspecification errors (Duan and Li 1991).
However, the problem of incorporating prior information in in-
verse regression methods is an unresolved research topic.

Our proposed method, which we refer to as constrained in-
verse regression (CIR), formulates and solves this problem of
dimension reduction in the presence of linear constraints on
model parameters. First, we create a set of constraints to em-
body the simple factor structure, so the resulting constraint
set is theory-driven (because it arises from researchers’ prior
knowledge). Second, by applying CIR, we extract factors that
satisfy the constraints and, by virtue of their construction, are
interpretable because they are consistent with researchers’ prior
knowledge. Third, we provide tests to determine whether an es-
timated factor should be retained in the model and if so, whether
its estimated coefficients are statistically significant. Finally, we
extend the applicability of CIR to other estimators, including
Cook and Weisberg’s (1991) sliced average variance estima-
tion (SAVE) and Bura and Cook’s (2001a) parametric inverse
regression (PIR). These extensions of CIR allow not only di-
mension reduction, but also factor interpretation.

Even when factor interpretation is not crucial, the CIR
approach adds value by enhancing estimation efficiency as
follows. We first create constraints by setting insignificant
coefficients to 0, resulting in a constraint set that is data-driven
(because it arises from data analyses). The CIR estimates that
result from such data-driven constraints have greater precision
than the corresponding unconstrained estimates.

The rest of the article is organized as follows. In Section 2
we develop the CIR approach for single-index models, and Sec-
tion 3 we extend it to multiple-index models and other inverse
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regression methods. In Section 4 we illustrate the performance
of CIR and the testing of data-driven constraints via Monte
Carlo studies. We also present an empirical application of CIR
for designing brand logos. We conclude by suggesting avenues
for further research in Section 5.

2. SINGLE–INDEX MODEL WITH
LINEAR CONSTRAINTS

Single-index models have been actively studied over the last
2 decades (e.g., Brillinger 1983; Stoker 1986; Powell, Stock,
and Stoker 1989; Duan and Li 1991; Ichimura 1993; Härdle,
Hall, and Ichimura 1993; Horowitz 1998; Hristache, Juditsky,
and Spokoiny 2001; Naik and Tsai 2000, 2001). They pro-
vide a flexible alternative to linear regression models while
giving more structure than a fully nonparametric approach. In
addition, they serve as the first projective approximation to a
general p-variate function, which is a useful feature in high-
dimensional data analysis. In this section we develop our ap-
proach for estimation and inference of single-index models in
the presence of constraints.

Consider the single-index model

Y = g(X′β) + ε, (1)

with linear constraints

A′β = 0, (2)

where X is a p × 1 vector of predictor variables with mean
E(X) = µ and variance var(X) = �x > 0, β is an unknown
p × 1 vector, ε for a given X is distributed as N(0, σ 2), σ is
an unknown scalar, and A is the known p × q constraint matrix
with q < p. We assume that g is an unknown differentiable func-
tion and that β ′�xβ = 1 for identification. When g is a known
function (or an identity function), model (1) with constraints
given in (2) becomes the nonlinear (or linear) constrained re-
gression model (see Seber and Wild 1989; Searle 1971). For
the sake of exposition, in the rest of the article we use the affine
transformation Z = �

−1/2
x (X − µ) and refer to β as the con-

strained effective dimension-reduction (edr) direction (see Li
1991).

Let M be a fixed p × m matrix (m ≤ p) such that Y|Z and
Y|M′Z have identical distributions (i.e., Y ⊥ Z|M′Z). Conse-
quently, we can replace the p × 1 vector Z by the m × 1 vec-
tor M′Z without loss of information. Thus the subspace S(M)

of R
p that is spanned by the columns of M is a dimension-

reduction subspace for the regression of Y on Z (see Li 1991).
If we let SY|Z denote the intersection of all dimension-reduction
subspaces and assume that SY|Z is a dimension-reduction space,
then it becomes the central dimension-reduction subspace (see
Cook 1998a, p. 105). This assumption ensures that the condi-
tional distribution of Y|PSY |ZZ is the same as the conditional
distribution of Y|Z, where PSY |Z represents the projection oper-
ator onto SY|Z with respect to the usual inner product. Next, we
apply inverse regression methods to estimate SY|Z.

In inverse regression (e.g., Duan and Li 1991; Li 1991), we
divide the range of Y into H slices and replace Y with a discrete
version Ỹ , which is constant in each slice. It follows from Cook
(1998a, p. 115) that SỸ|Z ⊆ SY|Z. To estimate SY|Z, we assume
that there exists a p × p positive-definite matrix M satisfying
S(M) ⊆ SỸ|Z (see Remarks 2 and 8 later). Next, we obtain the

constrained edr direction β , which is unique up to a scaling
constant, by maximizing

η′Mη

subject to the constraints

Ã′η = 0 and η′η = 1, (3)

where η = �
1/2
x β and Ã = �

−1/2
x A. Solving the quadratic pro-

gramming problem (see Rao 1973, p. 50), we have the follow-
ing result.

Proposition 1. The constrained edr direction η̃ is given by
the principal eigenvector of (I − P)M, where P = Ã(Ã′Ã)−Ã′.

Proof. Let the q × 1 vector δ and a scalar λ denote the
Lagrange multipliers for parametric and identification con-
straints. Then the augmented objective function is

η′Mη − 2δ′(Ã′η) − λ(η′η − 1).

Differentiating the foregoing expression with respect to η, δ,
and λ, and setting the resulting expressions to 0, we obtain
(a) Mη − Ãδ − λη = 0, (b) Ã′η = 0, and (c) η′η − 1 = 0. Next,
premultiplying (a) by I − P, we have

(I − P)Mη = λη.

Consequently, the principal eigenvector of (I − P)M, denoted
by η̃, yields a constrained edr direction. Thus the constrained
edr direction β is given by β̃ = �

−1/2
x η̃, which completes the

proof.

Remark 1. Because S((I − P)M) ⊆ S(M), Proposition 1 im-
plies that η̃ ∈ S((I − P)M) ⊆ S(M) ⊆ SỸ|Z. To estimate η̃, we
replace E(X), �x, P, and M with their corresponding esti-
mators, X̄, �̂x = ∑n

i=1 (Xi − X̄)(Xi − X̄)′/n, P̂ = Â(Â′Â)−Â′,
and M̂, where Â = �̂

−1/2
x A; X̄ = ∑n

i=1 Xi/n, M̂ is a function
of (Xi,Yi), i = 1, . . . ,n; and (Xi,Yi) are generated from the
model (1) with constraints (2). Based on the observed sample,
the CIR estimate of β̃ is β̂ = �̂

−1/2
x η̂, where η̂ is the principal

eigenvector of (I − P̂)M̂.

Remark 2. We can construct M̂ in several ways. For ex-
ample, in sliced inverse regression (SIR), Li (1991) assumed
that the linearity condition E(Z|PSY |ZZ) = PSY |ZZ holds (also

see Cook and Yin 2001). Then M = var{E(Z|Ỹ)} ensures that
S(M) ⊆ SỸ|Z. Hence, based on the observed sample,

M̂sir =
H∑

h=1

nh

n
Ê(Z|Ỹ = h)Ê(Z|Ỹ = h)′,

where nh is the number of observations in slice h and Ê(Z|
Ỹ = h) is the p × 1 vector of means of Z in slice h. See Re-
mark 8 for alternative approaches.

Remark 3. The constraint set in (2) is homogenous. When
A′β = c and c �= 0, we need to apply Gander, Golub, and Matt’s
(1989) secular equation or quadratic eigenvalue equation to ob-
tain the constrained edr direction β in single-index models with
nonhomogenous constraints.
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Remark 4. We note that the results of this section hold when
we replace the single-index model (1) with the formulation
Y ⊥ X|X′β . This alternate formulation is more general; for ex-
ample, it does not require normal errors, it allows for a discrete
response variable, and it includes generalized linear models as
well as variance models Y = g(X′β)ε as its special cases.

Next we provide a chi-squared test to determine whether to
retain a constrained single index in model (1).

Proposition 2. Let λ̄ denote the average of the smallest
(p − q) eigenvalues of (I − P̂)M̂sir. If model (1) with con-
straints (2) holds and X is normally distributed, then n(p − q)λ̄

is asymptotically distributed as a chi-squared random variable
with (p − q)(H − 1) degrees of freedom.

Proof. The eigenvalues of (I − P̂)M̂sir are the same as those

of M̂1/2
sir (I − P̂)M̂1/2

sir . We note that M̂1/2
sir (I − P̂)M̂1/2

sir is a sym-

metric matrix and that tr{(I − P̂)} = p − q. This allows us to ap-
ply perturbation theory for finite-dimensional spaces (see Kato
1976, p. 79). We next replace T(ω) given in Li’s appendix A.3

(1991, p. 326) with M̂1/2
sir (I − P̂)M̂1/2

sir , and then adapt his tech-
niques to obtain the foregoing result.

Remark 5. If the statistic n(p−q)λ̄ exceeds the critical value
of the chi-squared distribution with (p − q)(H − 1) degrees of
freedom, then the estimated principal eigenvector is significant.
However, this test holds when X is normally distributed. For
non-Gaussian X with finite second moments, we can adapt Bura
and Cook’s (2001b) approach to find the limiting distribution of
n(p − q)λ̄. To this end, we replace p and �c in their Theorem 1
with (p − q) and with the modified version of �c deduced from
the constraints.

Remark 6. An anonymous referee suggested an alternative
approach for deriving Proposition 2. Let the spectral decompo-
sition of A be U�V′ and let C = (A,B) be a p × p full-rank
matrix, where B represents the last p − q columns of U. Next,
transform X to X̃ = C−1X and γ = C′−1

β = (0′,γ ′
2)

′. Then
X′β = X̃′

2γ 2, where X̃2 denotes the last p − q columns of X̃.
This transformation converts the constrained eigenvalue prob-
lem to the unconstrained one, thus enabling the use of stan-
dard SIR theory as well as other inverse regression results (e.g.,
Prop. 2 and Remark 5).

Remark 7. To further assess the significance of estimated co-
efficients, we need the standard errors (SEs) of β̂ . Using results
from Chen and Li (1998) and Hocking (1996, p. 74), we find
that SE(β̂) is given by the squared root of diagonal elements of
the matrix

n−1{(1 − λ̂)/λ̂}�̂−1/2
x (I − P̂)�̂

−1/2
x ,

where λ̂ is the principal eigenvalue of (I − P̂)M̂sir. This al-
lows computation of the t-ratio (e′

jβ̂/SE(e′
jβ̂)) for testing H0 :

e′
jβ = 0, where ej = (0, . . . ,1, . . . ,0)′ is the p × 1 vector that

selects the jth predictor variable in X.

3. MULTIPLE–INDEX MODEL WITH
LINEAR CONSTRAINTS

In dimension-reduction analyses, a single index may not re-
trieve all of the interesting features of high-dimensional data.

Hence Li (1991) and Ichimura and Lee (1991) proposed mod-
els with multiple indexes, where each index is a distinct factor
formed by a linear combination of all of the predictor variables.
The unconstrained multifactor model is

Y = g(X′β1,X′β2, . . . ,X′βK, ε), (4)

where g is an unknown differentiable function as defined in (1),
βk is an unknown p × 1 vector, ε is independent of X, and
β ′

k�xβk = 1 for identification. To extract interpretable factors,
we seek factors that combine some, but not all, predictor vari-
ables. Next we investigate how to incorporate this prior infor-
mation for two different constrained settings.

3.1 Identical Constraints on Different Dimensions

We consider model (4) with the constraints

A′βk = Ã′ηk = 0 (k = 1, . . . ,K), (5)

where K denotes the number of constrained edr’s to be es-
timated, K ≤ (p − q), ηk ∈ S((I − P)M), ηk = �

1/2
x βk , and

Ã and P are defined in (3) and Proposition 1. Equation (5) im-
plies that each βk satisfies the same constraint matrix A. To
incorporate them in parameter estimation, we jointly maximize

max{η1,...,ηK}

K∑

k=1

η′
kMηk, (6)

subject to the theory-driven constraints (5) and the identification
constraints η′

kηk = 1.

Proposition 3. The constrained edr directions (η̃1, . . . , η̃K)

are given by the eigenvectors of (I − P)M corresponding to the
K largest eigenvalues.

Proof. We augment (6) to
∑K

k=1{η′
kMηk − 2δ′

k(Ã
′ηk) −

λk(η
′
kηk − 1)}, where δk is the q × 1 vector and λk is the scalar.

Applying the Lagrange multiplier approach, we thus obtain the
foregoing edr directions that span the subspace of S((I − P)M).

3.2 Different Constraints on Different Dimensions

To incorporate different constraints on different dimensions
(e.g., Takane et al. 1995), we consider the model (4) with the
constraints

A′
kβk = Ã′

kηk = 0 (k = 1, . . . ,K), (7)

where Ak is the given p × qk constraint matrix, qk < p,
Ãk = �

−1/2
x Ak such that the resulting constrained edr direc-

tion on the kth factor is independent of those for the lth factor
(i.e., the constraints embody a simple structure). Equation (7)
indicates that βk satisfies its own constraint set, Ak. In addition,
we assume that

ηk ∈ S
(
(I − Pk)M

)
(k = 1, . . . ,K), (8)

where Pk = Ãk(Ã′
kÃk)

−1Ã′
k. The following proposition pro-

vides the joint edr directions for model (4) subject to the theory-
driven constraints (7), the identification constraints η′

kηk = 1,
and the assumption (8).

Proposition 4. The constrained edr directions (η̃1, . . . , η̃K)

are given by the principal eigenvector of (I − Pk)M, where
Pk = Ãk(Ã′

kÃk)
−1Ã′

k .
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Proof. We augment (6) to
∑K

k=1{η′
kMηk − 2δ′

k(Ã
′
kηk) −

λk(η
′
kηk − 1)}. After differentiation and algebraic simplifica-

tion, the kth constrained edr direction is given by the principal
eigenvector of (I − Pk)M, which completes the proof.

The edr directions {η̃1, . . . , η̃K} span the K-dimensional sub-
space of S(M), and the constrained βk is given by β̃k =
�

−1/2
x η̃k. For the observed sample (Xi,Yi), i = 1, . . . ,n, we

obtain the CIR estimate of β̃k, β̂k = �̂
−1/2
x η̂k, where η̂k is

the principal eigenvector of (I − P̂k)M̂, P̂k = Âk(Â′
kÂk)

−1Â′
k,

and Âk = �̂
−1/2
x Ak. We examine the retention of the kth fac-

tor by replacing q with qk in Proposition 2 and Remark 5. To
further assess the significance of the jth predictor variable in
the kth factor, we need the standard errors of β̂k, which are
given by the squared root of the diagonal elements of the matrix
n−1{(1 − λ̂k)/λ̂k}�̂−1/2

x (I − P̂k)�̂
−1/2
x , where λ̂k is the princi-

pal eigenvalue of (I − P̂k)M̂. Using the estimated SEs, we test
the null hypothesis H0 : e′

jβ jk = 0.

Remark 8. We can extend CIR to several inverse regres-
sion methods other than SIR. For example, in SAVE, Cook
and Weisberg (1991) assume that both the linearity condition
(defined in Remark 2) and the constant variance condition,
var(Z|PSY |ZZ) = I − PSY |Z , hold (also see Cook 1998a, p. 197).

Then M = E[{I − var(Z|Ỹ)}2] ensures that S(M) ⊆ SỸ|Z.
Hence, based on the observed sample,

M̂save =
H∑

h=1

nh

n

(
I − ˆvar(Z|Ỹ = h)

)(
I − ˆvar(Z|Ỹ = h)

)
,

where ˆvar(Z|Ỹ = h) is the p × 1 vector of average variances
of the standardized predictor in slice h. Using M̂save, we ex-
tract the principal eigenvector of (I − P̂k)M̂save, denote it by
η̂k,save, and estimate β by β̂k,save = �̂

−1/2
x η̂k,save. It is challeng-

ing to determine the significance of the SAVE factor, because
the distribution of λ̄ is unknown except when the response vari-
able is binary (see Cook and Yin 2001). In this case, Cook and
Lee (1999, p. 1192) showed that λ̄ is asymptotically distributed
as the weighted combination of chi-squared random variables.
Following Cook and Lee’s approach, we obtain the asymptotic
distribution under constraints by replacing p with (p − qk) in
their theorem 3.

Analogously, PIR, developed by Bura and Cook (2001a), can
be generalized to models with constraints if we construct M̂
using the core matrix B̂std (see Bura and Cook 2001a, p. 399,
for details). Specifically, by replacing p in their theorem 1 with
(p − qk), we obtain the asymptotic distribution of the scaled λ̄,
which we use to assess the significance of the PIR factor. Note
that q, as defined in their theorem, refers to the dimension of the
multivariate linear model rather than the columns of a constraint
matrix, as used in this article.

Furthermore, the applicability of CIR is not limited to in-
verse regression methods. For example, if we construct M̂pHd

using the core matrix �̂yzz (see Li 1992; Cook 1998b), then we
are able to generalize the principal Hessian direction (pHd) ap-
proach by incorporating prior information via constraints. The
asymptotic distribution of the scaled λ̄ (or the square of the

smallest eigenvalues of the matrix M̂pHd) is obtained by re-
placing p with (p − qk) in Li’s theorem 4.2 and Cook’s theo-
rem 1. The CIR approach also applies to categorical covariates
(Chiaromonte, Cook, and Li 2002; Xia, Tong, Li, and Zhu
2002), binary response models (Cook and Lee 1999), and other
models mentioned in Li’s (2000) book manuscript.

Remark 9. The results for multiple-index models with iden-
tical or different constraints extend to a more general model
setting; specifically, we replace model (4) with the formulation

Y ⊥ X|X′B,

where B = (β1, . . . ,βk) and (X,Y) have a joint distribution
(e.g., Cook 1998a). This formulation further enhances the gen-
erality of CIR, as noted in Remark 4.

4. SIMULATION AND EXAMPLE

Here we present three Monte Carlo studies and an empiri-
cal example. The first simulation illustrates the performance of
CIR when estimating a two-factor model with constraints that
exemplify the notion of simple factor structure, whereas the sec-
ond study shows that CIR correctly identifies the factors even
though constraints do not reflect a simple structure. The third
study investigates the performance of Wald’s test for evaluating
data-driven constraints. Finally, the empirical example demon-
strates that CIR enhances factor interpretation in a marketing
application for designing brand logos.

4.1 Performance of CIR Estimates

In the first simulation study, the two-factor model is

Yi = X′
iβ1 + exp(X′

iβ2) + εi, (9)

with two constraint matrices,

A′
1 =

(1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)

and

(10)

A′
2 =

(
0 0 0 1 0
0 0 0 0 1

)

,

where β1 = (0,0,0,1,1)′/
√

2 and β2 = (1,1,1,0,0)′/
√

3.
In addition, Xi = (Xi1, . . . ,Xi5)

′ ∼ N(0, I), εi ∼ N(0,1), and
Xi and εi are independent for i = 1, . . . ,400, where I denotes
the 5 × 5 identity matrix.

The constraint matrix A1 indicates that the first factor ex-
cludes the variables (Xi1,Xi2,Xi3), whereas A2 states that the
second factor excludes the variables (Xi4,Xi5). Hence con-
straint matrices A1 and A2 reflect the simple structure of the
two factors by setting some model parameters to be 0. To illus-
trate the performance of CIR, we generated 1,000 realizations
from the model (9) with constraints (10). Table 1 presents the
average estimates of (β̂1, β̂2) and their corresponding t-values.
It shows that the CIR estimates for both factors are accurate
[i.e., close to (β1,β2)] and exactly 0 for the excluded variables.
Thus the CIR approach performs well when estimating factor
models with a simple structure. Moreover, the CIR estimates
simplify factor interpretation, because the first CIR factor con-
sists of only the variables (Xi4,Xi5), whereas the second CIR
factor contains only the variables (Xi1,Xi2,Xi3).
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Table 1. CIR Estimates for Model (9) With Constraints (10)

β1 β2 β̂1 β̂2

0 1/
√

3 0 .6205
(8.80)

0 1/
√

3 0 .6034
(9.13)

0 1/
√

3 0 .5728
(7.86)

1/
√

2 0 .7182 0
(9.61)

1/
√

2 0 .6006 0
(8.15)

NOTE: The numbers in parentheses represent t -values.

In the second simulation study, we impose constraints that
differ from those implied by the simple structure concept.
Specifically, we change the constraint matrices in (10) to

A′
1 = (1,1,1,1,−4) and

A′
2 =






1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




 ,

(11)

with β1 = (1,1,1,1,1)′/
√

5 and β2 = (0,0,0,0,1)′. The first
constraint, A1, indicates that the average of the first four coeffi-
cients of β1 equals its fifth coefficient, whereas the second con-
straint, A2, suggests that the first four coefficients of β2 are 0.
We kept the same simulation settings for Xi and εi as in the first
study, and generated 1,000 realizations from the model (9) with
constraints (11).

Table 2 presents the average estimates of (β̂1, β̂2) and their
corresponding t-values. We see that the CIR estimates are close
to (β1,β2) for both factors and that their precision is high, as
evidenced by the t-values. Furthermore, results based on the test
in Proposition 2 indicate that both factors should be retained
in each of the 1,000 realizations. Hence the CIR approach not
only estimates the model parameters accurately, but also identi-
fies the latent factors correctly because of the prior information
contained in constraints A1 and A2.

The foregoing two simulation studies investigate the proper-
ties of CIR estimates when the constraints are an inherent part
of the model itself. When researchers learn the factor structure
ex post (i.e., after analyzing a particular data sample rather than
using prior information based on theoretical considerations),

Table 2. CIR Estimates for Model (9) With Constraints (11)

β1 β2 β̂1 β̂2

1/
√

5 0 .4439 0
(9.07)

1/
√

5 0 .4453 0
(9.11)

1/
√

5 0 .4478 0
(9.15)

1/
√

5 0 .4450 0
(9.09)

1/
√

5 1 .4455 .9995
(19.85) (23.27)

NOTE: The numbers in parentheses represent t -values.

they may create “data-driven” constraints by setting some co-
efficients to 0. We next study the performance of Wald’s test to
assess such data-driven constraints.

4.2 Testing Data-Driven Constraints

When the link function is known, we can apply the F-test to
examine the linear hypothesis L′β = 0, where L is p × q and
q ≤ p (see Searle 1971, chap. 3; Hocking 1996, chap. 3; Seber
and Wild 1989, chap. 5). When the link function is not known
[i.e., g is an unknown function in (1)], theorem 4.2′ of Duan
and Li (1991, p. 514) furnishes a Wald-type test to assess the
validity of linear hypothesis. The test statistic

nβ̂
′
L(L′�̂−1

x L)−1L′β̂
Ŝ

is distributed asymptotically as χ2
q , where Ŝ is defined in (4.9)

of Duan and Li (1991).
To study the small-sample performance of this test, we con-

sider the single-factor model

Yi = exp(X′
iβ) + εi (i = 1, . . . ,400), (12)

where β = (β(1), . . . , β(5))
′ = (3,1,4,0,2)′ and Xi and εi have

the same simulation setting as before. Then we test the null
hypothesis H0 : L′β = β(4) = 0 against the alternative hypoth-
esis H1 : L′β = β(4) �= 0, where L′ = (0,0,0,1,0). Across
1,000 simulated datasets, we compare the test’s outcome in
each replication to the χ2

1 critical value at the α = .05 level.
In addition, we examine the robustness of this test with respect
to nonnormality and outliers by generating the X variables from
the t5 distribution and the errors ε from the contaminated nor-
mal distribution, .95N(0,1) + .05N(0,25).

Figure 1 presents the power functions for this test under three
conditions: normal, nonnormal, and outliers. A well-behaved
test should have a size around .05 when the null hypothesis
holds and a power tending to unity as the true value departs
away from the null. In Figure 1, we observe that the test con-
trols the size well and has high power under normal covariate
and error distributions. When the covariates are nonnormal or
outliers are present, it becomes conservative with slightly re-
duced power. We thus conclude that the test performs satisfac-
torily in terms of both size and power, and so it can be applied
for testing a data-driven constraint matrix L.

Figure 1. Power Function for Testing H0 :L′β = 0, Where
L = (0, 0, 0, 1, 0)′ ( normal X ’s and errors; contaminated
errors; nonnormal X ’s).
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As for practical guidelines for using this test, if the null hy-
pothesis is rejected, then the unconstrained estimates do not sat-
isfy the data-driven constraints. Hence users may retain the CIR
estimates when the constraints are deemed valid. If the null hy-
pothesis is not rejected, however, then they should use the CIR
approach, which also improves estimation efficiency.

Remark 10. Under certain conditions (e.g., normal covari-
ates), the foregoing test can be shown to be equivalent to
Chen and Li’s (1998, p. 298) t-test for the null hypothesis
H0 : L′β = β( j) = 0, where L = e( j) (see Remark 7). More-
over, Chen and Li’s test can be applied to test the hypothesis
H0 : L′βk = 0 in multiple-index models.

4.3 Application to Brand Logo Design

Here we analyze marketing data to discover factors that in-
fluence how much people like logo designs. The desirability
of a logo design (i.e., the logo affect) serves as the dependent
variable. The design characteristics of logos are measured by
11 variables: organic, representative, balance, symmetric, com-
plexity, active, depth, parallel, round, proportion, and repetition.
For example, organic designs are made up of natural shapes
(e.g., irregular curves), as opposed to geometric shapes, which
tend to be less natural, synthetic-looking objects. Similarly,
representative designs capture realism in a logo design as op-
posed to abstract designs, which distill all elements down to the
most central ones. A detailed description of all measured vari-
ables is given in table 1 of Henderson and Cote (1998, p. 16).
Because two professional graphic designers provided ratings on
each measured variable, we have a total of 22 predictor vari-
ables in this study (see column 1 in Table 4). Henderson and
Cote (1998) collected the original data on a sample of 195 logo
designs.

Henderson and Cote (1998) further described the simple
factor structure, which we present in Table 3. This structure
indicates the number and composition of factors in terms of the
measured variables. For example, Table 3 reveals that the nat-
ural factor consists of the two variables organic and representa-
tive but does not include the other nine variables. We emphasize
that this “prior” knowledge is available from substantive con-
siderations, for example, information obtained during the ques-
tionnaire design stage and before collection of the field data.
After data collection, researchers seek to extract factors that are
consistent with prior knowledge reflected in both the question-
naire design and data collection. Therefore, we regard this prior
information on factor structure as a given fact.

We incorporate this information on a simple structure in Ta-
ble 3 to create constraint matrices Ak (k = 1, . . . ,7). To form
the first constraint matrix, we observe that the first 4 coefficients
in the natural factor are nonzero and the remaining 18 coeffi-
cients are 0’s. Hence,

A′
1 = [018×4|I18×18],

where 018×4 denotes a matrix of 0’s, and I18×18 is an iden-
tity matrix. Similarly, we construct the constraints matrices
A2, . . . ,A7 and apply CIR to extract the seven factors in Ta-
ble 3. Based on the chi-squared test given in Proposition 2, the
first and third factors are significant, and the remaining five fac-
tors are not significant. For the sake of comparison, we also
present the results from factor analysis conducted by Henderson
and Cote (1998, p. 21).

Table 4 displays two significant factors, natural and elabo-
rate. It shows that β̂

∗
1, computed via factor analysis, indicates

that all variables load on this factor. Because the SEs are not
available, researchers deem a variable in the factor to be sig-
nificant if its estimated coefficient exceeds an arbitrary cutoff
value of .3 (see, e.g., Darton 1980, p. 183). Using this cutoff,
we would incorrectly infer that the natural factor consists of or-
ganic, representative, and complexity. In other words, the pres-
ence of complexity endangers construct validity and misleads
factor interpretation. In contrast, the CIR approach extracts the
natural factor with nonzero coefficients for the two variables
organic and representative and zero coefficients for all other
variables not included in this factor. Because the test statistic
exceeds the critical value (see Table 4), we conclude that this
natural factor significantly influences the desirability of logo
designs. In addition, the β̂1 estimates, computed via CIR, re-
veal the relative importance of the four variables composing
the naturalness factor. Thus CIR provides an objective way of
understanding a factor’s simple structure.

We also estimate the simple structure of the elaborate factor.
The chi-squared test statistic in Table 4 suggests that we retain
this factor, and the t-tests show that the significant variables are
complexity 2, active 1, and active 2, whereas the insignificant
variables are complexity 1, depth 1, and depth 2. As for the
other five factors, the chi-squared test indicates that we exclude
them.

An additional benefit of the CIR approach is that it can ex-
tract factors without specifying a relationship between the logo
affect and the natural or elaborate factors. Consequently, the

Table 3. Prior Information on the Simple Factor Structure for Logo Design

Measured Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7
variables natural harmony elaborate parallel round proportion repetition

Organic 1 0 0 0 0 0 0
Representative 1 0 0 0 0 0 0
Balance 0 1 0 0 0 0 0
Symmetry 0 1 0 0 0 0 0
Active 0 0 1 0 0 0 0
Complexity 0 0 1 0 0 0 0
Depth 0 0 1 0 0 0 0
Parallel 0 0 0 1 0 0 0
Round 0 0 0 0 1 0 0
Proportion 0 0 0 0 0 1 0
Repetition 0 0 0 0 0 0 1

NOTE: 1 indicates the presence of the variable in a factor; 0 indicates its absence.
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Table 4. CIR and Factor Analysis Estimates for the
Logo Design Example

Natural Elaborate

Factor
analysis

CIR
estimates

Factor
analysis

CIR
estimates

Variables β̂∗
1 β̂1 β̂∗

3 β̂3

Organic 1 .656 .2010 .196 0
(1.17)

Organic 2 .717 .2880 .208 0
(1.84)

Representative 1 .886 .0190 .117 0
(.12)

Representative 2 .872 .2849 −.044 0
(1.60)

Balance 1 .060 0 −.127 0
Balance 2 .085 0 −.043 0
Symmetry 1 −.193 0 .013 0
Symmetry 2 −.165 0 .014 0
Active 1 .143 0 .756 .3624

(4.64)
Active 2 .038 0 .730 .1488

(2.37)
Complexity 1 .477 0 .568 −.1496

(−1.35)
Complexity 2 .316 0 .694 .5488

(5.61)
Depth 1 −.110 0 .667 .0826

(.70)
Depth 2 .032 0 .670 .0344

(.67)
Parallel 1 .075 0 .124 0
Parallel 2 .075 0 .085 0
Round 1 .173 0 −.020 0
Round 2 .202 0 .022 0
Proportion 1 .038 0 −.018 0
Proportion 2 .035 0 .006 0
Repetition 1 −.102 0 .074 0
Repetition 2 −.118 0 .110 0

Eigenvalue .17 .48
Test statistic 52.03 123.60
Critical value 50.99 72.15
Retain factor? Yes Yes

NOTE: The numbers in parentheses represent t -values.

estimated factor structures are link-free, because we did not im-
pose a specific link function g(·) during factor extraction, and
hence the CIR factors avert potential misspecification errors
(Duan and Li 1991). After extracting the link-free factors, we
follow Li’s (1991) suggestion for exploring the nature of the
nonlinear relationship between affect and the significant fac-
tors by using loess (Cleveland 1979). Figure 2 presents the two
curves g(natural) and g(elaborate), where the natural factor is
Xβ̂1 and the elaborate factor is Xβ̂3. These curves indicate that
the positive affect for logo design increases gradually as the nat-
uralness of the logo increases. In contrast, less-elaborate logo
designs (e.g., factor score < 4) are disliked (i.e., negative af-
fect). As logo designs become more elaborate (i.e., factor score
> 4), the positive affect for logo increases rapidly and then ta-
pers off eventually. Overall, these results suggest that marketers
should strive to design logos that are highly natural but moder-
ately elaborate.

Finally, if the primary goal is to achieve dimension reduction
rather than to aid factor interpretation, then we first construct
data-driven constraints and apply CIR to increase estimation
efficiency. To this end, we obtain unconstrained estimates by
applying SIR. Based on Li’s (1991) chi-squared test, we retain
one SIR factor, then compute the t-values for the 22 predictor

Figure 2. The Estimated Link Functions for Natural (- - - - -) and Elab-
orate (——) Factors.

variables (−.13,−.62,−2.88,−.11,1.96,−1.51,1.14,−3.07,

−2.97, −3.72, 2.02,−5.31,−.02,−1.70,−.41,−.25,−2.33,
1.66,−1.48,1.74,−1.39, and 1.77). Next we construct a bi-
nary constraint matrix L̂ in which 1 indicates an excluded vari-
able (i.e., the absolute t-value is < 1.96). Using this data-driven
constraint matrix, we obtain the CIR estimates whose corre-
sponding t-values are (na,na,−4.61,na,1.44,na,na,−4.01,

−3.67,−3.81,1.82,−6.09,na, na, na, na, −1.45,na, na, na,

na,na), where na denotes “not applicable” because parame-
ters are identically 0. These t-values indicate that the CIR es-
timates are more precise, because we shrink the insignificant
coefficients to 0. Thus the CIR approach not only extracts in-
terpretable factors, but also improves the precision of estimated
parameters.

5. CONCLUSIONS

We have developed the CIR method to directly incorporate
prior information on factor composition into the estimation and
inference of factor models. We have shown that CIR extends the
applicability of single-index and multiple-index models, allows
discrete responses, and nests general linear models and variance
models (see Remarks 4 and 9). Furthermore, CIR generalizes
to a broad class of inverse regression methods (see Remark 8).
Thus applied researchers can use it to extract factors that com-
bine some, but not all, predictor variables so that the result-
ing factors are interpretable and conform to prior information.
However, this prior information should be based on theoreti-
cal or substantive considerations, as in the empirical example.
If not, then the constraints encompassing prior information are
likely to be misspecified, and so the estimated factors can be
misleading. Although this caveat is not unique to CIR (i.e., it
also applies to constrained regression models and constrained
PCA), we caution researchers to ensure the validity of prior in-
formation. Alternatively, they may test hypotheses to discover
constraints that are consistent with the observed data.

We conclude this article by identifying two avenues for fur-
ther research: (1) extending linear constraints to the nonlinear
setting A(β) = 0, where A(·) is a given vector-valued func-
tion, and (2) incorporating constraints on both the variables and
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observations (e.g., Takane and Shibayama 1991), which would
entail the application of finite-mixture models (McLachlan and
Peel 2000) in conjunction with the CIR. We believe that these
efforts would augment the applicability of inverse regression
methods for analyzing high-dimensional data.

[Received January 2003. Revised April 2004.]

REFERENCES
Brillinger, D. R. (1983), “A Generalized Linear Model With ‘Gaussian’ Regres-

sion Variables,” in A Festschrift for Erich L. Lehmann in Honor of His Sixty-
Fifth Birthday, eds. P. J. Bickel, K. A. Doksum, and J. L. Hodges, New York:
Wadsworth, pp. 97–114.

Bura, E. (2003), “Using Linear Smoothers to Assess Structural Dimension of
Regressions,” Statistica Sinica, 13, 143–162.

Bura, E., and Cook, R. D. (2001a), “Estimating the Structural Dimension of Re-
gressions via Parametric Inverse Regression,” Journal of the Royal Statistical
Society, Ser. B, 63, 393–410.

(2001b), “Extending Sliced Inverse Regression: The Weighted Chi-
Squared Test,” Journal of the American Statistical Association, 96, 996–1003.

Chen, C. H., and Li, K. C. (1998), “Can SIR Be as Popular as Multiple Linear
Regression?” Statistica Sinica, 8, 289–316.

Chiaromonte, E., Cook, R. D., and Li, B. (2002), “Sufficient Dimension Reduc-
tion in Regressions With Categorical Predictors,” The Annals of Statistics, 30,
475–497.

Cleveland, W. S. (1979), “Robust Locally Weighted Regression and Smoothing
Scatterplots,” Journal of the American Statistical Association, 74, 829–836.

Cook, R. D. (1998a), Regression Graphics, New York: Wiley.
(1998b), “Principal Hessian Directions Revisited” (with discussion),

Journal of the American Statistical Association, 93, 84–100.
Cook, R. D., and Lee, H. (1999), “Dimension Reduction in Binary Response

Regression,” Journal of the American Statistical Association, 43, 1187–1200.
Cook, R. D., and Setodji, C. (2003), “A Model-Free Test for Multivariate Re-

gression,” Journal of the American Statistical Association, 98, 340–351.
Cook, R. D., and Weisberg, S. (1991), Discussion of “Sliced Inverse Regression

for Dimension Reduction,” by K. C. Li, Journal of the American Statistical
Association, 86, 328–332.

Cook, R. D., and Yin, X. (2001), “Dimension Reduction and Visualization in
Discriminant Analysis” (with discussion), Journal of the American Statistical
Association, 94, 147–199.

Darton, R. A. (1980), “Rotation in Factor Analysis,” The Statistician, 19,
167–194.

Duan, N., and Li, K. C. (1991), “Slicing Regression: A Link-Free Regression
Method,” The Annals of Statistics, 19, 505–530.

Gander, W., Golub, G. H., and Matt, U. V. (1989), “A Constrained Eigenvalue
Problem,” Linear Algebra and Its Application, 114, 815–839.

Härdle, W., Hall, P., and Ichimura, H. (1993), “Optimal Smoothing in Single-
Index Models,” The Annals of Statistics, 21, 157–178.

Henderson, P. W., and Cote, J. A. (1998), “Guidelines for Selecting or Modify-
ing Logos,” Journal of Marketing, 62, 14–30.

Hocking, R. R. (1996), Methods and Applications of Linear Models: Regression
and the Analysis of Variance, New York: Wiley.

Horowitz, J. L. (1998), Semiparametric Methods in Econometrics, New York:
Springer-Verlag.

Hristache, M., Juditsky, A., and Spokoiny, V. (2001), “Direct Estimation of
the Index Coefficient in a Single-Index Model,” The Annals of Statistics, 29,
595–623.

Ichimura, H. (1993), “Semiparametric Least Squares (SLS) and Weighted SLS
Estimation of Single-Index Models,” Journal of Econometrics, 58, 71–120.

Ichimura, H., and Lee, L. F. (1991), “Semiparametric Least Squares Estima-
tion of Multiple-Index Models,” in Single Equation Estimation in Nonpara-
metric and Semiparametric Methods in Econometrics and Statistics, eds.
W. A. Barnett, J. Powell, and G. Tauchen, Cambridge, U.K.: Cambridge Uni-
versity Press, Chap. 1.

Kato, T. (1976), Perturbation Theory for Linear Operators (2nd ed.), Berlin:
Springer-Verlag.

Li, K. C. (1991), “Sliced Inverse Regression for Dimension Reduction” (with
discussion), Journal of the American Statistical Association, 86, 316–342.

(1992), “On Principal Hessian Directions for Data Visualization and
Dimension Reduction: Another Application of Stein’s Lemma,” Journal of
the American Statistical Association, 87, 1025–1039.

(2000), “High Dimensional Data Analysis via the SIR/PHD Ap-
proach,” unpublished manuscript, April 6, 2000, available at www.stat.ucla.
edu/˜kcli/sir-PHD.pdf.

Li, K. C., Aragon, Y., Shedden, K., and Agnan, T. (2003), “Dimension Re-
duction for Multivariate Response Data,” Journal of the American Statistical
Association, 98, 99–109.

McLachlan, G., and Peel, D. (2000), Finite Mixture Models, New York: Wiley.
Naik, P. A., Hagerty, M. M., and Tsai, C. L. (2000), “A New Dimension Reduc-

tion Approach for Data-Rich Marketing Environments: Sliced Inverse Re-
gression,” Journal of Marketing Research, 37, 88–101.

Naik, P. A., and Tsai, C. L. (2000), “Partial Least Squares Estimator for Single-
Index Models,” Journal of the Royal Statistical Society, Ser. B, 62, 763–771.

(2001), “Single-Index Model Selections,” Biometrika, 88, 821–832.
Powell, J. L., Stock, J. H., and Stoker, T. M. (1989), “Semiparametric Estima-

tion of Index Coefficients,” Econometrica, 57, 1403–1430.
Rao, C. R. (1973), Linear Statistical Inference and Its Applications, New York:

Wiley.
Searle, S. R. (1971), Linear Models, New York: Wiley.
Seber, G. A. F., and Wild, C. J. (1989), Nonlinear Regression, New York: Wiley.
Stoker, T. M. (1986), “Consistent Estimation of Scaled Coefficients,” Econo-

metrica, 54, 1461–1481.
Takane, Y., Kiers, H. A. L., and de Leeuw, J. D. (1995), “Component Analysis

With Different Sets of Constraints on Different Dimensions,” Psychometrika,
60, 259–280.

Takane, Y., and Shibayama, T. (1991), “Principal Component Analysis With
External Information on Both Subjects and Variables,” Psychometrika, 56,
97–120.

Thurstone, L. L. (1947), Multiple Factor Analysis, Chicago: University of
Chicago Press.

Xia, Y., Tong, T., Li, W. K., and Zhu, L. X. (2002), “An Adaptive Estimation of
Dimension Reduction Space” (with discussion), Journal of the Royal Statis-
tical Society, Ser. B, 64, 363–410.




