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We examine the problem of jointly selecting the number of components and variables in finite mixture regression models. We find that the
Akaike information criterion is unsatisfactory for this purpose because it overestimates the number of components, which in turn results in
incorrect variables being retained in the model. Therefore, we derive a new information criterion, the mixture regression criterion (MRC),
that yields marked improvement in model selection due to what we call the “clustering penalty function.” Moreover, we prove the asymptotic
efficiency of the MRC. We show that it performs well in Monte Carlo studies for the same or different covariates across components with
equal or unequal sample sizes. We also present an empirical example on sales territory management to illustrate the application and efficacy
of the MRC. Finally, we generalize the MRC to mixture quasi-likelihood and mixture autoregressive models, thus extending its applicability
to non-Gaussian models, discrete responses, and dependent data.
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1. INTRODUCTION

In the life sciences, engineering, medical, and business disci-
plines, researchers encounter the need to group similar objects
and separate dissimilar ones to better understand the substan-
tive phenomenon of interest. Cluster analysis provides one way
to group objects into various clusters that are maximally dis-
tant from each other (e.g., Hartigan 1975). Once this classifi-
cation is done, researchers seek to understand the differential
impact of explanatory variables on some phenomenon of inter-
est across various clusters. Toward this end, they may estimate
a regression model in each cluster, but the resulting estimated
coefficients are seriously biased even if clusters are well sepa-
rated (Bryant and Williamson 1978). On the other hand, finite
mixture regression models (see McLachlan and Peel 2000) pro-
vide an approach to classifying objects into various components
(or clusters) and estimating regression models across compo-
nents simultaneously (e.g., DeSarbo and Corn 1988; Wedel and
Kamakura 2000, chap. 7).

Presently, users can apply extant approaches (e.g., Biernacki,
Celeux, and Govaert 2000; Tibshirani, Walther, and Hastie
2001; Tadesse, Sha, and Vannucci 2005) to determine the num-
ber of components (but not variables) or information criteria,
such as the Akaike information criterion (AIC) (Akaike 1973)
and Bayes information criterion (BIC) (Schwarz 1978), to se-
lect the variables (but not components). Recently, Raftery and
Dean (2006) investigated the simultaneous selection of the vari-
ables to use for clustering and the number of clusters retained
in the model; however, their model does not specify a family
of multiple regression models to predict the response variable
across components. In summary, there is no method available to
aid the joint selection of components and variables in mixture
regression models. Moreover, adapting the penalty term in the
AIC or BIC to select both components and variables may not
provide satisfactory performance, especially when the sample
size is small or the number of variables is large. Specifically,
these criteria fit too many components (i.e., overcluster) and re-
tain too many variables (i.e., overfit). A serious consequence of
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overclustering is that it results in fitting spurious regressions in
nonexistent components, whereas overfitting reduces the accu-
racy of estimated effects and lowers the precision of forecasts
(Altham 1984).

The objective of this article is to develop a method for the
simultaneous determination of the number of components and
variables in finite mixture regression models. We first derive
the mixture regression criterion (MRC) using the complete-
data log-likelihood discrepancy between the true and candidate
models. The MRC consists of three terms: the first measures
the lack of fit, the second imposes a penalty for regression pa-
rameters, and the third is what we call the clustering penalty
function. The second term is the multicomponent generaliza-
tion of the penalty function given by Hurvich and Tsai (1989),
whereas the third term penalizes the number of components
to be retained. We prove that the MRC is an efficient crite-
rion. Using Monte Carlo studies, we show that MRC performs
satisfactorily because the clustering penalty function mitigates
the problem of overclustering. Specifically, the MRC performs
well when different components contain the same or different
covariates with either equal or unequal sample sizes. It outper-
forms both the AIC and BIC in small-sample data and high-
dimensional models. Using empirical data, we illustrate that the
MRC yields meaningful results, whereas the AIC tends to over-
cluster and overfit the data. Finally, we generalize the MRC’s
applicability to mixture quasi-likelihood models (McCullagh
and Nelder 1989) and mixture autoregressive time series mod-
els (Le, Martin, and Raftery 1996; Wong and Li 2000). Thus
the MRC can be applied not only to discrete response or non-
Gaussian data such as those arising from logistic or Poisson
mixture regression models, but also to dependent and nonlin-
ear stochastic processes that exhibit various phenomena, such
as flat stretches, cycles, outliers, and conditional heteroscedas-
ticity.

The article is organized as follows. In Section 2 we derive the
MRC criterion for mixture regression models and prove its as-
ymptotic efficiency. In Section 3 we report Monte Carlo studies
and present an empirical example. In the concluding Section 4
we extend the MRC to non-Gaussian and mixture time series
models and also suggest three avenues for further research.
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2. INFORMATION CRITERION FOR MIXTURE
REGRESSION MODELS

In this section we describe the structure and estimation of
finite-mixture regression models, derive the model selection cri-
terion, and prove its asymptotic efficiency.

2.1 Model Structure

Consider a candidate model with density function

f (y;x, φ) =
K∑

k=1

αkfk(y;x,βk, σk), (1)

where 0 < αk ≤ 1 and
∑K

k=1 αk = 1; fk(y;x,βk, σk) is the nor-
mal density with mean x′βk and variance σ 2

k ; x is a p × 1 vec-
tor of explanatory variables, which are given and considered
fixed (i.e., nonrandom); βk is a conformable parameter vector;
and φ = {(αk,βk, σk) : k = 1, . . . ,K}. Let Z be an n × K indica-
tor matrix with jkth element, zjk, equalling unity when yj arises
from the kth component of the mixture and 0 otherwise. Then,
for the given data {(yj,xj, zj) : j = 1, . . . ,n}, the complete-data
log-likelihood function (see Titterington, Smith, and Markov
1985, p. 84; McLachlan and Peel 2000, p. 48) of the candidate
model is

L(φ;Z,Y,X) =
K∑

k=1

n∑

j=1

zjk{logαk + log fk(yj;xj,βk, σk)},
(2)

where Y = (y1, . . . , yn)
′, and the explanatory vectors xj ( j =

1, . . . ,n) are stored in an n × p matrix X = (x1, . . . ,xn)
′. Sim-

ilarly, the complete-data log-likelihood function of the true
model is obtained by replacing L, fk, φ, X, xj, Z, zjk, αk, βk,
σk, p, and K in (2) with L0, f 0

k , φ0, X0, x0
j , Z0, z0

jk, α0
k , β0

k , σ 0
k ,

p0, and K0.

2.2 Model Estimation

To estimate mixture regression models, we apply the expecta-
tion–maximization (EM) algorithm (Dempster, Laird, and
Rubin 1977). Let φ(m) = {(α(m)

k ,β
(m)
k , σ

(m)
k ) : k = 1, . . . ,K} de-

note the provisional estimates at the mth iteration and de-
fine Q(φ;φ(m)) = E[L|Y,X, φ(m)]. In the E-step, we obtain
Q(φ;φ(m)) by replacing zjk in (2) with the expected value
τjk = E[zjk|yj], which is given by

τ
(m)
jk = α

(m)
k fk(yj;xj,β

(m)
k , σ

(m)
k )

∑K
k=1 α

(m)
k fk(yj;xj,β

(m)
k , σ

(m)
k )

.

In the M-step, we maximize Q(φ;φ(m)) with respect to (αk,

βk, σk). This maximization yields closed-form estimates for the
(m + 1)th iteration,

α
(m+1)
k =

n∑

j=1

τ
(m)
jk

n
,

β
(m+1)
k = (

X̃(m)
k

′X̃(m)
k

)−1X̃(m)
k

′Ỹ(m)
k ,

and

σ
2(m+1)
k = Ỹ(m)

k
′(I − H̃(m)

k )Ỹ(m)
k

tr(W(m)
k )

,

for k = 1, . . . ,K, where W(m)
k = diag(τ

(m)
k ), τ

(m)
k = (τ

(m)
1k , . . . ,

τ
(m)
nk )′, X̃(m)

k = W(m)1/2
k X, Ỹ(m)

k = W(m)1/2
k Y, and H̃(m)

k =
X̃(m)

k (X̃(m)
k

′X̃(m)
k )−1X̃(m)

k
′.

The E- and M-steps are alternated until the value of log{ f (Y;
X, φ(m+1))/f (Y;X, φ(m))} decreases below a preset tolerance.
We initialize the algorithm and obtain τ

(0)
jk by partitioning

X into K clusters either randomly or rationally through the
K-means clustering method (MacQueen 1967). The resulting
estimates eventually converge to the maximum likelihood es-
timators, φ̂ = {(α̂k, β̂k, σ̂k) : k = 1, . . . ,K}, which have the de-
sirable asymptotic properties (Redner and Walker 1984; Wu
1983). In addition, we follow the suggestion of Hathaway
(1985) to set the lower bound such that mink,l(σ̂k/σ̂l) ≥ c,
c ∈ (0,1], to eliminate singularities in the likelihood function
and reduce the likelihood of spurious local maxima. Hathaway
(1985, p. 799) suggested that a good value of c can be de-
termined by varying it dynamically over the unit interval. To
choose K components and p variables for retention in a mixture
regression model, we next propose the MRC model selection
criterion.

2.3 Derivation of the Mixture Regression Criterion

The main goal of model selection is to approximate the true
model using candidate models with different combinations of
(K,p) and then retain the model that entails a minimum loss of
information. The true model is a mixture model of the form (1)
for some integer K0 of component models (1 < K0 < K) and
some subvector of dimension p0 of the vector of explanatory
variables (1 < p0 < p). Consequently, the columns of X can be
rearranged so that X0β0

k = Xβ∗
k , where β∗

k = (β0
k
′,β1

k
′)′ and

β1
k is a (p − p0)× 1 vector of 0’s for k = 1, . . . ,K (see Hurvich

and Tsai 1989).
Next, consider fitting a candidate model using the observed

sample Y. We apply the EM algorithm in Section 2.2 to ob-
tain φ̂. More specifically, the resulting estimate α̂k is an av-
erage of τ̂jk over j = 1, . . . ,n; β̂k depends on τ̂jk through
Ŵk = diag(τ̂ k), and σ̂ 2

k depends on τ̂jk through both Ĥk =
X̂k(X̂′

kX̂k)
−1X̂′

k and tr(Ŵk), where X̂k = Ŵ1/2
k X. Thus, for

each k = 1, . . . ,K, (α̂k, β̂k, σ̂
2
k ) depends implicitly on τ̂ k =

(τ̂1k, . . . , τ̂nk)
′. In other words, the estimated parameters

θ̂ = (φ̂, τ̂ ) are functions of the observed sample Y, where
τ̂ = (τ̂1, . . . , τ̂K). How well does this fitted model predict fu-
ture samples Y∗ = (y∗

1, . . . , y∗
n)

′ that are generated from the
true model and independent of Y? Conceptually, Y∗ serves
as the holdout sample for assessing the quality of fitted mod-
els. We can assess the prediction quality using the metric
�(θ̂) = EY∗{L0(φ0;Z∗,Y∗,X) − L(φ̂; τ̂ ,Y∗,X)}, where Z∗ is
an n × K0 matrix whose jkth element, z∗

jk, equals unity when y∗
j

arises from the kth component of the mixture and is 0 otherwise.
Because θ̂ depends on Y, we adopt Akaike’s (1985) predictive
approach to eliminating this dependence on the particular sam-
ple by averaging �(θ̂(Y)) across different independent samples
Y drawn from the true model. The resulting complete-data log-
likelihood (CL) discrepancy is

dCL = EY
{
�(θ̂(Y))

}

= 2EY
[
EY∗{L0(φ0;Z∗,Y∗,X) − L(φ̂; τ̂ ,Y∗,X)}], (3)
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where both expectations are evaluated with respect to the true
model. The double expectation in (3) has been commonly used
to obtain model selection criteria (see Burnham and Anderson
2002, pp. 60, 443). For example, in single-component regres-
sion, Burnham and Anderson (2002, chap. 7.4) applied this ap-
proach to obtain a second-order improvement to the AIC and
recommended its extension to finite-mixture models (p. 344).
It is noteworthy that dCL is based on Akaike’s (1985) concept
of predictive likelihood, which can be interpreted as cross-
validation of the future samples Y∗ using original X and es-
timated parameters (see Burnham and Anderson 2002, p. 365).

Given a collection of competing fitted candidate models, the
one that minimizes dCL is preferred. Appendix A shows that an
estimator of dCL is

MRC∗ =
K∑

k=1

tr(Ŵk) log(σ̂ 2
k )

+
K∑

k=1

tr(Ŵk)(tr(Ŵk) + ν̂k1)(δ̂k1/δ̂k2)

δ̂2
k1/δ̂k2 − 2

− 2
K∑

k=1

tr(Ŵk) log(α̂k). (4)

In (4), δ̂k1 = tr{(I − Ĥk)Ŵk}, δ̂k2 = tr[{(I − Ĥk)Ŵk}2], and
ν̂k1 = tr(ĤkŴk), where Ĥk = X̂k(X̂′

kX̂k)
−1X̂′

k.
To further simplify the MRC∗, we consider the true model

in which clusters are well separated and observations are per-
fectly classified into only one cluster (say, the kth) so that
the resulting diagonal elements of W0

k are either 1 or 0. Us-
ing W0

k , we note that H0
k = X0

k(X
0
k
′X0

k)
−1X0

k
′ is the projec-

tion matrix, where X0
k = (W0

k)
1/2X. Then we observe that

(W0
k)

1/2H0
k(W

0
k)

1/2 and (W0
k)

1/2(I − H0
k)(W

0
k)

1/2 are idem-
potent matrices and that {(W0

k)
1/2H0

k(W
0
k)

1/2}{(W0
k)

1/2(I −
H0

k)(W
0
k)

1/2} = 0. Next, applying results of Cochran (1934),
we find that ε′

k(W
0
k)

1/2H0
k(W

0
k)

1/2εk/(σ
0
k )2 and ε′

k(W
0
k)

1/2(I−
H0

k)(W
0
k)

1/2εk/(σ
0
k )2 are independent chi-squared distributions

with the degrees of freedom tr(H0
kW0

k) = νk1 = p0 and tr{(I −
H0

k)W
0
k} = δk1 = δk2 = n0

k − p0, where εk is as defined in (A.2)
in Appendix A. Consequently, νk1 = p0, δk1/δk2 = 1, and
δ2

k1/δk2 = n0
k − p0. When clusters are not separated, we approx-

imate νk1, δk1/δk2, and δ2
k1/δk2 by p0, 1, and n0

k − p0. Based on
extensive simulation studies, we found these approximations to
be reasonably accurate for the purpose of model selection. Us-
ing these approximations to simplify (4), we thus obtain the
mixture regression criterion

MRC =
K∑

k=1

n̂k log(σ̂ 2
k ) +

K∑

k=1

n̂k(n̂k + pk)

n̂k − pk − 2
− 2

K∑

k=1

n̂k log(α̂k),

(5)
where pk = tr(Ĥk) and n̂k = tr(Ŵk).

The first term of MRC measures the lack of fit, which can
be reduced by including more variables in the candidate model
so that σ̂ 2

k becomes small. The second term balances this temp-
tation to add variables by imposing a penalty for overfitting.
The third term, which we call the clustering penalty func-
tion, provides a countervailing force to mitigate overcluster-
ing. To illustrate this point, we present two examples. First,

let the mixing proportions be equal, that is, α̂k = 1/K for
k = 1, . . . ,K. The resulting third term simplifies to 2n log(K),
which indicates that the clustering penalty increases with K.
Second, let the mixing proportions of the first K − 1 com-
ponents be fixed. We investigate the effect of including one
incremental component beyond the Kth one, ceteris paribus.
As a result, the third term equals −2

∑K
k=1 n̂k log(α̂k) = C1 −

2n̂K log(α̂K) = C1 − 2{ρn̂K log(α̂K)}− 2{(1 −ρ)n̂K log(α̂K)} ≤
C1 − 2{ρn̂K log(ρα̂K)} − 2{(1 − ρ)n̂K log((1 − ρ)α̂K)}, where
C1 = −2

∑K−1
k=1 n̂k log(α̂k) and ρ ∈ [0,1]; that is, the third term

tends to impose a larger penalty as an additional component
is included incrementally. Next, we present the large-sample
property of the MRC.

2.4 Asymptotic Efficiency of the Mixture
Regression Criterion

Let An be the set of candidate models consisting of vari-
ous combinations of components and variables. In other words,
An = {ξ : ξ = k ×λ,λ = λ1 ×· · ·×λk, k ∈ {1,2, . . . ,K}, λk is a
nonempty subset of {1, . . . ,qn}, and Yk = Xk(ξ)βk(ξ) + ek},
where Yk = ZkY, Xk(ξ) = ZkX(ξ), Zk = diag(z1k, . . . , znk),
qn is a positive integer that may depend on n, and ek are random
errors. In addition, let A0

n = {ξ ∈ An : E(Yk) = Xk(ξ)βk(ξ) +
o(1), and k ≥ K0} be a subset of An so that each ξ in A0

n is as-
sociated with a model that is closest to the true model. Next, let
ξ̂ denote the model selected by the MRC based on its smallest
value across all possible candidate models, and let ξ0 = K0 ×λ0

be the model in A0
n with the smallest dimension. Hence the

true model in the kth component, Z0
kXβ∗

k , can be represented as
Xk(ξ

0)βk(ξ
0) + o(1), where Z0

k = diag(z0
1k, . . . , z0

nk). To prove
an asymptotic result, we make the following assumptions.

Assumption 1. When n is sufficiently large, ξ̂ ∈ A0
n.

Assumption 2. Let Ln,k(ξ) = ‖Ŵ1/2
k X(ξ)β̂k(ξ)− (W0

k)
1/2 ×

X0β
0
k‖2/n̂k. For all ξ ∈ A0

n and k = 1, . . . ,K0, Ln,k(ξ) =
(σ 0

k )2pk

n̂k
+op(

1
n̂k

), and there is a random variable ωk independent
of the current model such that

σ̂ 2
k = ωk + Ln,k(ξ) − 2pk(σ

0
k )2

n̂k
+ op(Ln,k(ξ)),

where op(·) denotes the convergence in probability for all
ξ ∈ An, the mean and variance of ωk are finite, and ωk >

(σ 0
k )2/2 except for an event with probability tending to 0 with n.

Assumption 3. For all ξ ∈ A0
n, q2

n
min1≤k≤K n̂k

= op(1), n̂k/n =
α0

k + op(Ln,k(ξ)), and α̂k = α0
k + op(Ln,k(ξ)), where α0

k > 0
for k = 1, . . . ,K0, α0

k = 0 for k = K0 + 1, . . . ,K, and σ̂k/α̂k

is uniformly bounded away from 0 and ∞ for all ξ ∈ An,
except for an event with probability tending to 0 with n.
To present the theorem, we introduce the notation Ln(ξ) =
Wn

∑K0

k=1 BkLn,k(ξ)
∏K0

j=1,j �=k Aj, where

Ak =
(

ωk

(α0
k )2

)α0
k
[

1 + 2

n

]
,

Bk = 2

(σ 0
k )2

(
ωk

(α0
k )2

)α0
k − 1

α0
k

(
ωk

(α0
k )2

)α0
k −1[

1 + 2

n

]
,
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and

Wn =
{

1 + 2(K − K0)

n

}
exp

(
K0∑

k=1

α0
k

)
.

Theorem. Let ξ̄ be the model such that Ln(ξ̄ ) =
minξ∈An Ln(ξ). If ξ̄ ∈ A0

n and Assumptions 1–3 are satisfied,
then

Ln(ξ̂ )

Ln(ξ̄ )
− 1 = op(1).

Appendix B provides the proof. Thus the model selected by
the MRC is asymptotically efficient (see Remark 2 for further
discussions). We close this section with six remarks that discuss
the assumptions and relate the MRC to other criteria.

Remark 1. We note that Assumptions 2 and 3 hold for single
component normal linear regression models (K = 1). Specifi-
cally, when K = 1, Y1 = Y, X1(ξ) = X(ξ), and n̂k = n, β̂1(ξ)

is the least squares estimate of β1(ξ). Consequently, the follow-
ing results hold:

• Ln,1(ξ) = ε′Hε/n with H = X(ξ)(X(ξ)′X(ξ))−1X(ξ)′.
• σ̂ 2

1 = ε′ε/n + Ln,1(ξ) − 2
nε′Hε = ω1 + Ln,1(ξ) − 2

nε′Hε

with ω1 = ε′ε/n.

Under some regularity conditions, using an argument similar to
that used by Shi and Tsai (1999, pp. 134–135), maxξ∈An | 1

nε′ ×
Hε − p1(σ

0
1 )2

n |/Ln,1(ξ) = op(1). If random errors are distributed
normally, then nω1/(σ

0
1 )2 is the chi-squared distribution with

degrees of freedom n. Therefore, Assumption 2 is satisfied. Fur-
thermore, when K = 1, Assumption 3 holds because α0

1 = 1,
n̂1/n = 1, and α̂1 = 1.

Remark 2. To prove the theorem, we adopted the approach
of Shibata (1981, 1984) to show that the MRC is an efficient
criterion, which means that an information criterion selects the
candidate model such that the resulting average prediction error
converges to the minimum of the average prediction error as the
sample size increases. It is important to recognize that accurate
predictive results can be obtained even when parameters are not
estimated consistently or when the true model is not included in
the list of candidate models. In this sense, the goals of predic-
tion, as advocated by Akaike (1985), differ from the classical
goals of consistent parameter estimation. Furthermore, consis-
tency in the model selection context means that an informa-
tion criterion (such as the BIC) selects the correct model with
probability approaching 1 in large samples when the true model
is in the family of candidate models. In data mining contexts,
however, the class of models used need not necessarily con-
tain the true model, and hence consistency becomes an irrele-
vant goal. Moreover, the conditions under which criteria such
as the BIC or AIC work well depend on other factors, for ex-
ample, the assumptions that researchers make about reality and
their intentions for model-based inference in a given applica-
tion (see Burnham and Anderson 2004). Further discussions on
efficiency and consistency in model selection have been given
by Burnham and Anderson (2002, sec. 6.4), Shao (1997), and
McQuarrie and Tsai (1998).

Remark 3. The MRC extends the applicability of single-
component information criteria to multiple-component re-
gression models. Specifically, in single-component normal
regression models (K = 1), we have that n̂k = n, pk = p, and
α̂k = 1. Consequently, (5) can be expressed as MRCK=1 =
n log(σ̂ 2) + n(n + p)/(n − p − 2), which equals the AICc of
Hurvich and Tsai (1989, p. 300). Furthermore, on subtracting
the constant n in MRCK=1, the penalty term can be written as
2{n/(n−p−2)}(p+1), which approaches 2(p+1) as n → ∞.
Hence MRC → AIC when K = 1 and n is large (except for the
constant 2, which does not alter model selection).

Remark 4. To measure model complexity, Spiegelhalter,
Best, Carlin, and van der Linde (2002) proposed the deviance
information criterion (DIC), which approximates the expected
predictive discrepancy so that users can select models with the
best out-of-sample predictive power (Gelman, Carlin, Stern,
and Rubin 2004, p. 183). When prior information is available,
the DIC is a more appropriate criterion than the Bayes fac-
tor, because users may not know ex ante all possible candidate
models. Spiegelhalter et al. (2002, p. 604) noted that when prior
information is negligible, the DIC is equivalent to the AIC. In
the discussion of their work, Burnham (2002, p. 629) stated that
the DIC might need small-sample correction, and Richardson
(2002, p. 627) showed that her computation of the DIC im-
posed an insufficient penalty for K-component mixture model
selection. Note that the proposed MRC, also based on predic-
tive likelihood (Akaike 1985), incorporates both small-sample
correction (through its second term) and the clustering penalty
(through the third term).

Remark 5. When explanatory variables contain noise, users
may apply the denoised least squares (DLS) estimator to extract
signals from noisy variables. Specifically, using equation (2.3)
of Cai, Naik, and Tsai (2000, p. 1234), the observed (X,Y) can
be denoised through wavelet transform to obtain XDLS = Hx ◦X
and YDLS = Hy ◦ Y, where Hx and Hy are smoothing matri-
ces. Using the denoised (XDLS,YDLS) as inputs, users can fol-
low Section 2.2 for parameter estimation and then apply the
MRC for model selection. When the sample size is smaller than
the number of variables (e.g., in chemometrics or bioinformat-
ics), users can apply the partial least squares (PLS) estimator
(e.g., Helland and Almøy 1994; Naik and Tsai 2000; Hastie,
Tibshirani, and Friedman 2001) within each component of the
mixture regression model. Specifically, construct the pk × qk
matrix Rk = (Sk1,Sk2Sk1, (Sk2)

2Sk1, . . . , (Sk2)
qk−1Sk1), where

pk × 1 vector Sk1 is the sample covariance of (X̃k, Ỹk), the
pk × pk matrix Sk2 is the sample covariance of X̃k, and qk is
the dimension of subspace of X̃k. Then replace βk with bk =
Rk(R′

kSk2Rk)
−1R′

kSk1 in the (m + 1)th iteration of Section 2.2
to obtain parameter estimators. Next, substituting pk by qk in
the MRC, users can jointly determine the number of compo-
nents and dimensions of subspace to retain.

Remark 6. We observe that, as in standard regression the-
ory, there is no constraint on the maximum number of vari-
ables in the mixture model selection theory. That is, users in
various fields can consider as many variables as they can esti-
mate. The resulting high dimensionality may increase the ratio
of the number of variables to the sample size. As we illustrate
in the simulation studies, the MRC’s performance improves as
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this ratio increases. Hence, the MRC is well suited for high-
dimensional models in which explanatory variables represent a
moderate to large fraction of the sample size. Next, we study
the finite-sample performance of the MRC.

3. SIMULATIONS AND APPLICATION

We begin this section by describing the simulation settings,
model estimation, and selection procedure. We then illustrate
the properties and performance of the MRC through simulation
results. Finally, we present an empirical example to elucidate
the MRC’s applications and efficacy.

3.1 Simulation Settings

We consider the following scenarios: same covariates across
components, different covariates across components, and a
single-component regression.

Same Covariates. In this scenario we consider equal and
unequal sample sizes across various components of the mix-
ture distribution. Specifically, in the equal sample case, the true
model consists of three components (K0 = 3) with 100 observa-
tions per component (n0

k = 100). Each component has a regres-
sion model with four explanatory variables ( p0 = 4). The true
regression parameters are β0

1 = (1,1,1,1)′, β0
2 = (1,2,3,4)′,

and β0
3 = (5,6,7,8)′. The true explanatory variables are stored

in nk × 4 matrices, X0
1, X0

2, and X0
3, with elements generated

from U(0, 5), U(5, 10), and U(10, 15), where U(a, b) denotes
the uniform distribution on interval [a, b]. The dependent vari-
able for each component is generated from Yk = X0

kβ
0
k + ε0

k ,

for k = 1, 2, and 3, where ε0
k ∼ N(0, (σ 0

k )
2
Ink), σ 0

k = 1, and
Ink is an identity matrix of dimension n0

k × n0
k . The errors, ε0

k ,
are independent of the explanatory variables, X0

k , and the total

number of observations is n = ∑3
k=1 n0

k = 300. In the unequal
case, we change the foregoing sample sizes to n0

1 = 50, n0
2 = 75,

and n0
3 = 100.

In each of the three components, seven variables are stored in
an n0

k × 7 matrix, Xk. The first four columns of Xk are the same
as X0

k , whereas the last three columns are generated from the
same distributions, namely U(0, 5) for component 1, U(5, 10)
for component 2, and U(10, 15) for component 3. The observed
matrix, X, is constructed by stacking X1, X2, and X3 on top of
each other. Analogously, the observed dependent variable, Y,
is obtained by stacking Y1, Y2, and Y3 on top of each other.
We consider five sets of candidate components, K = 1, . . . ,5.
A family of candidate regression models includes up to seven
variables from X in a sequentially nested fashion. Hence we
have 35 possibilities—7 nested regression models in each of
the 5 sets of candidate components—from which to select the
true model. (Note that we slightly abuse notation Yk, X0

k , and
Xk with respect to their dimensions for the sake of simplicity.)

Different Covariates. Although we derived the MRC by as-
suming that pk = p, it naturally generalizes to permit selection
of different variables across different components (i.e., pk �= p).
To study this more general case, the true model consists of two
components with two variables in the first one and four vari-
ables in the second component. The simulation setting from
the same covariates case is modified by retaining the last two

components (i.e., k = 2 and 3) and deleting the last two vari-
ables in the component k = 2. Thus the resulting β0

1 = (1,2)′,
β0

2 = (5,6,7,8)′, K0 = 2, and n = n1 + n2 = 200. The set
of candidate models is similar to that in the same covariates
case except that Xk now includes the first five columns of Xk

given in that case, and only three sets of candidate components
(K = 1,2,3) are considered. For each K, the five candidate re-
gression models include variables of X in a sequentially nested
manner.

Single-Component Regression. As Zhu and Zhang (2004,
p. 5) noted, one key issue is to determine whether two or more
mixture regressions are warranted. Toward this end, we gen-
erate data from a standard regression model using the same
covariates setting with K0 = 1 and fit candidate models with
either one or two components. We next describe the estimation
and selection procedure for calibrating these mixture regression
models.

3.2 Estimation and Selection Procedure

We use the following procedure to simultaneously determine
the number of components and variables in mixture regres-
sion models. First, for the given {(K,pk) : K = 1, . . . ,5,pk =
1, . . . ,7}, we use the K-means algorithm to classify observa-
tions from a candidate matrix X into K groups so that the ini-
tial probabilities can be estimated to start the EM algorithm.
Then we apply the EM algorithm (with c = .1 as in Hathaway
1985) to estimate the mixture regression model (see Sec. 2.2).
Next, we compute the MRC by substituting the parameter es-
timates into (5). Finally, we generate 1,000 realizations from
the true models described in Section 3.1 and compute the selec-
tion criteria for each realization. For some random realizations,
(n̂k − pk − 2) can become negative, in which case we replace it
with 10−2 to ensure a positive penalty in (5).

3.3 Simulation Results

Table 1 presents the joint frequency of component and vari-
able selection for the same covariates across components. In
the top part of the table, we see that MRC correctly selects the
true components and variables on 924 occasions out of 1,000
realizations. To provide insight into the source of this improve-
ment, the bottom part of the table displays the MRC’s selection

Table 1. Frequency of Components and Variables Jointly Selected by
the MRC in 1,000 Realizations for the Same Covariates

Setting With Equal Sample Sizes

p

K 1 2 3 p0 = 4 5 6 7
Column

sum

MRC
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
K0 = 3 0 0 0 924 52 16 8 1,000
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0

MRC without the clustering penalty
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
K0 = 3 0 0 0 0 0 0 0 0
4 0 0 0 1 0 1 1 3
5 0 0 0 167 258 336 236 997
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frequency without the clustering penalty. When it is ignored,
the MRC tends to not only retain the largest number of com-
ponents, but also select irrelevant variables (833 times out of
1,000 realizations). Thus the clustering penalty function plays
an important role in the proper selection of mixture regression
models, yielding a marked improvement. A qualitatively sim-
ilar improvement due to the clustering penalty is observed for
the unequal sample size, and hence we do not elaborate on the
results here.

We next discuss the results for the case with different covari-
ates in the two components (K0 = 2,p0

1 = 2, and p0
2 = 4). This

scenario allows pk �= p for all k and considers 155 possibilities
(5 nested variable selections in K = 1, 5 × 5 variable selec-
tions when K = 2, and 5 × 5 × 5 variable selections for K = 3)
from which to identify the true model. Consequently, determin-
ing components and variables becomes complicated. To reduce
this complexity, we implement a two-stage procedure: first, de-
termine the best number of components by retaining all vari-
ables in the regression models, and then select the best set of
covariates for the chosen components. Simulation results show
that this two-stage procedure compares well with the exhaus-
tive search of 155 cluster–variable combinations. Furthermore,
the MRC selects the number of components correctly 999 times
out of 1,000 realizations, whereas it chooses the covariates cor-
rectly in the first and second components on 783 and 844 real-
izations.

As for the results of the single-component regression, we find
an average MRC of 105.10 for the single-component model and
207.57 for the two-component regression model, implying that
it correctly selects the true model on average. More specifically,
the MRC identifies the single-component model almost always
and jointly selects the correct number of components and vari-
ables 797 times, compared with 65 times for the AIC (out of
1,000 realizations). This result supports the findings of the em-
pirical example given in Section 3.4.

Finally, we compare the MRC with other prominent informa-
tion criteria. Specifically, in single-component regression mod-
els, the AIC and BIC are AIC = −2{log f (Y;X, φ̂)} + 2p and
BIC = −2{log f (Y;X, φ̂)} + p log(n), where log f (Y;X, φ̂) is
the maximized log-likelihood. To account for the (K − 1) es-
timated mixing proportions as well as the estimated regression
coefficients and error variances in each of the K components,
applied users replace p with the penalty d = (K −1)+K(p+1)

and consider the resulting criterion a “heuristic figure of merit”
(DeSarbo and Cron 1988, p. 259). We illustrate the relative
performance of these criteria by considering three components
with small sample size (n = 30), high-dimensional models
(large p = 10 and moderate n = 75), and large sample size (n =
300). In both the small- and large-sample cases, the true and
candidate models are identical to those in the same-covariates
setting detailed in Section 3.1. In the high-dimensional case,
we let the true β0

1 = (1, . . . ,1)′, β0
2 = (1,2, . . . ,10)′, and β0

3 =
β0

1 + U(0,1) and consider up to 15 variables in candidate mod-
els.

Table 2 indicates that the AIC performs poorly in all three
cases because it lacks the appropriate penalty to prevent over-
clustering. Further examining the joint frequency of variable
and component selections (not presented here), shows that the

Table 2. Correct Selections in 1,000 Realizations
by the AIC, BIC, and MRC

Small-sample High-dimensional models Large-sample

AIC 1 0 20
BIC 70 114 995
MRC 990 999 924

AIC tends to choose incorrectly the maximum candidate com-
ponents (K = 5) as much as 75% of the time, thereby segment-
ing the data too finely. Similarly, it selects more variables than
necessary (instead of too few). Thus an important insight here
is not just that the AIC overclusters, but that the AIC chooses
the variables incorrectly because of spurious clustering. Anal-
ogously, the BIC also performs poorly when the sample size is
small or the model dimensionality is high (see Table 2). How-
ever, it performs better than the AIC in large samples, as it
should because of its consistency property. This finding extends
the single-component simulation results given by McQuarrie
and Tsai (1998, sec. 9.2). Moreover, Table 2 reveals that the
MRC outperforms both the AIC and BIC for small samples
and high-dimensional models and is competitive with the BIC
in large samples even though it is not a consistent criterion.
The MRC’s performance improves as the sample size decreases
from n = 300 to n = 30. This “small n bias correction” is due
to the parameter penalty (i.e., the second term of the MRC),
which increases as the pk/n̂k ratio increases. This finding cor-
roborates the results of Hurvich and Tsai (1989) for the single-
component case. Hence we recommend using the MRC when
datasets are small or explanatory variables represent a moderate
to large fraction of the sample size.

3.4 Empirical Application

Here we illustrate that the AIC tends to overcluster and
overfit the real data. We investigate the problem of evaluating
sales territory performance (see, e.g., Cravens, Woodruff, and
Stamper 1972) and analyze the dataset given by Dielman (2001,
p. 493), which contains information on 25 sales territories. In
each territory, we observe the unit sales (Y), the company’s ad-
vertising effort (X1), the salesperson’s effort (X2) (which equals
a salesperson’s workload per account multiplied by the number
of accounts in that territory), the salesperson’s experience (X3),
and the salesperson’s ability (X4) as rated by his or her supervi-
sor. First, we center the data by subtracting from each variable
its corresponding mean, to eliminate the need for estimating
the intercept coefficients. Given the small sample of 25 obser-
vations, we estimate mixture regression models with two com-
ponents and consider the retention of four variables. We apply
the MRC, AIC, and BIC to jointly determine the components
and variables to be retained.

Based on the results in Table 3, the MRC retains the single-
component model with two variables. In contrast, the AIC re-
tains the two-component mixture regression model with all four
variables, which corroborates the phenomena observed in simu-
lation studies, namely that the AIC overclusters and overfits the
data. Although the BIC suggests the single-component model
(as selected by the MRC), it lends substantial support to the
two-component model with four variables (as selected by the
AIC), because the difference between the smallest and the next-
smallest BIC values equals 332.93 − 332.54 = .39 < 2 (see
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Table 3. AIC, BIC, and MRC Values for the Sales Territory Example

p

K 1 2 3 4

AIC
1 351.01 328.88 329.84 330.02
2 353.06 334.88 327.85 319.52

BIC
1 353.44 332.54 334.72 336.11
2 359.16 343.42 338.82 332.93

MRC
1 376.55 355.02 356.84 358.17
2 400.55 389.29 374.29 379.77

Burnham and Anderson 2002, p. 70; Spiegelhalter et al. 2002,
p. 613). Hence the BIC is ambivalent. Next, we highlight the
adverse decision making consequences of overclustering and
overfitting.

In Table 4, the estimated single-component model indicates
that sales are driven by both advertising and the salesperson’s
effort in a sales territory. Although a salesperson’s experience
and ability increase sales, these effects are not statistically sig-
nificant. Substantively, these results suggest that the company’s
management should allocate its scarce resources to sales com-
pensation (to motivate sales effort) and trade advertising (to
support selling activities) rather than investing those resources
in sales training programs (to improve the salespersons’ abili-
ties). When we consider the two-component model retained by
the AIC, we see that the parameter estimate for the salesper-
son effort in the second component (k = 2) has a wrong sign
(i.e., suggesting that increased sales effort leads to lower sales).
Consequently, the management would be misled into reducing
the salesperson’s workload, the number of accounts handled, or
both. In addition, the estimated effects of salesperson experi-
ence are large and significant for both of the components. This
finding would lead to incorrect hiring decisions, because man-
agement would target older, more experienced salespersons in-
stead of younger ones. Finally, in the second component, both
the effect and the significance of salesperson ability are over-
stated, potentially leading to overinvestment in sales training
programs. Thus, in the absence of an appropriate clustering
penalty function as in the MRC, the users of mixture regres-
sion models incur the risk of detecting spurious components
and fitting regressions in nonexistent components.

4. CONCLUDING REMARKS

We have examined the joint determination of the number of
components and variables for mixture regression models and

Table 4. Estimated Effects for the Sales Territory Models
for K = 1 and K = 2

K = 1 K = 2

Variables One segment Segment k = 1 Segment k = 2

Advertising effort .22 .17 .25
(4.31) (2.92) (23.46)

Salesperson effort .81 1.14 −.17
(4.22) (6.22) (−3.24)

Salesperson experience 2.26 7.47 7.70
(1.16) (2.98) (16.81)

Salesperson ability 194.44 147.12 325.79
(1.38) (.93) (11.94)

NOTE: t-values are reported in parentheses.

have derived the MRC model selection criterion, which has a
desirable asymptotic property and performs well in finite sam-
ples. Here we discuss extension of the MRC to non-Gaussian
data and time series models.

4.1 Mixture Quasi-Likelihood Model

The quasi-likelihood approach (Nelder and Pregibon 1987;
McCullagh and Nelder 1989) augments the scope of linear
models by including various non-Gaussian models (e.g., lo-
gistic regression models, Poisson regression models). Here we
further extend the approach of McCullagh and Nelder (1989,
pp. 336, 350) and consider the mixture of quasi-likelihood mod-
els in the exponential family,

f (yj;φ) =
K∑

k=1

[
αk

{
−1

2
log(σk)

2 − 1

2

D(yj;µjk)

σk
2

}]
, (6)

where αk > 0,
∑

k αk = 1; D(yj;µjk) = 2{Q(yj; yj) − Q(yj;
µjk)}; Q(yj;µjk) = {yjθjk −b(θjk)+c(yj)}; b(·) and c(·) are suit-
ably chosen functions; µjk = Ek(yj) = ∂b(θjk)/∂θjk; g(µjk) =
ηjk = xj

′βk; xj is a p×1 explanatory vector for j = 1, . . . ,n, and
βk is a conformable parameter vector. Relegating the details to
Appendix C, we show that the MRC in (5) serves as the selec-
tion criterion for model (6). Note that in the single-component
case (K = 1), this extended MRC is identical to Hurvich and
Tsai’s (1994) AICc criterion. Thus this extended MRC can be
used to select non-Gaussian mixture regression models (e.g.,
Wedel and Kamakura 2000, chap. 7; McLachlan and Peel 2000,
chap. 5).

4.2 Mixture Autoregressive Time Series Model

We consider two broad classes of time series models. The
Gaussian mixture transition distribution model (GMTD) cap-
tures various nonlinear phenomena, including flat stretches,
bursts, and outliers in time series data (Le et al. 1996). The mix-
ture autoregressive models (MARs), which include the GMTD
model as a special case, incorporate additional features, such as
cycles and conditional heteroscedasticity (Wong and Li 2000).
Following Wong and Li (2000, eq. 2.1), we specify the MAR
model,

F(yt|Ft−1) =
K∑

k=1

αk�

{
yt − γk1yt−1 − · · · − γkpk yt−pk

σk

}
,

t = p̃ + 1, . . . ,n, (7)

where p̃ = max(p1, . . . ,pK), Ft−1 is the information set up to
time t − 1 and �(·) is the distribution function of a standard
normal variate. The parameters of the MAR model can be es-
timated using an EM algorithm (see Wong and Li 2000). To
determine the components K and select the order pk, we ap-
ply the derivation in Section 2.3 to the model structure in (7).
Relegating the details to Appendix D, we show that the result-
ing criterion has the same form as (5). Following Chen, Chen,
and Kalbfleisch (2004), we test the quintessential hypothesis of
homogeneity versus K-component mixture autoregressive mod-
els, which would otherwise require a computationally intensive
bootstrap approach (McLachlan 1987). Specifically, we con-
sider Hurvich and Tsai’s (1989) simulation setting to generate
30 observations from an AR(2) process, yt = .99yt−1 − .8yt−2 +
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εt, εt ∼ N(0,1), and select across 35 different MAR models
with p = 1, . . . ,7 lagged variables and K = 1, . . . ,5 compo-
nents. The Monte Carlo results show that the AIC retains the
correct model 0 times, the BIC retains the correct model 142
times, and the MRC yields marked improvement with 862 cor-
rect selections out of 1,000 realizations.

We close by identifying three avenues for further research.
The first of these is to derive the MRC for mixtures of single-
index models in which fk(yj;xj,βk, σk) in (1) is the normal
density with mean hk(x′

jβk), where hk(·) is an unknown dif-
ferentiable function. (For the single-component case, see Naik
and Tsai 2001; for the partial linear regression model, see Chen
and Jin 2006.) The second avenue is to adopt Shi and Tsai’s
(2002) residual likelihood approach or Hjort and Claeskens’
(2003) frequentist model average method to further extend the
applicability of the MRC. The third avenue is to extend Green’s
(1995) reversible-jump Markov chain Monte Carlo strategies
and Brooks et al.’s (2003) simulated annealing algorithm for
joint determination of mixture models and regression variables.
We believe that such efforts would enhance the usefulness of
mixture regression models.

APPENDIX A: DERIVATION OF THE MIXTURE
REGRESSION CRITERION

We note that EY[EY∗ {L0(φ0;Z∗,Y∗,X)}] in (3) does not depend
on the fitted candidate model and can be viewed as a constant (see
McLachlan and Peel 2000, chap. 6.8; Burnham and Anderson 2002,
chap. 2.1.2). Ignoring this constant, (3) can be expressed as

dCL = −2EY
[
EY∗ {L(φ̂; τ̂ ,Y∗,X)}]

= −2EYEY∗

{ K∑

k=1

n∑

j=1

τ̂jk
[
log α̂k + log fk(y

∗
j ;xj, β̂k, σ̂k)

]
}

,

(A.1)

where τ̂jk , α̂k , β̂k , and σ̂ 2
k are EM estimators of τjk , αk , βk , and σ 2

k
(see Sec. 2.2). After algebraic simplifications, we have

dCL = EY

{ K0∑

k=1

[
tr(Ŵk)

{
log

(
σ̂ 2

k

α̂2
k

)
+ (σ 0

k )2

σ̂ 2
k

}

+ (β̂k − β∗
k )′X̂′

kX̂k(β̂k − β∗
k )

σ̂ 2
k

]}

= EY

[ K0∑

k=1

{
tr(Ŵk) log

(
σ̂ 2

k

α̂2
k

)}]

+ EY

{ K0∑

k=1

[
{tr(Ŵk)}2 (σ 0

k )2

ε′
kŴ1/2

k (I − Ĥk)Ŵ
1/2
k εk

]}

+ EY

{ K0∑

k=1

[
tr(Ŵk)

ε′
kŴ1/2

k ĤkŴ1/2
k εk

εkŴ1/2
k (I − Ĥk)Ŵ

1/2
k εk

]}
, (A.2)

where εk = Y − Xβ∗
k .

Under regularity conditions, τ̂ k is a consistent estimate of τ0
k =

(τ0
1k, . . . , τ

0
nk)

′ (see Redner and Walker 1984; Leroux 1992), where

τ0
jk = E(z0

jk|Y). Therefore, we replace Ŵk and Ĥk in the second and

third terms of the right side of (A.2) by W0
k = diag(τ0

k ) and H0
k ,

where H0
k = X0

k(X0′
k X0

k)−1X0′
k and X0

k = (W0
k)1/2X. Then we ap-

ply Satterthwaite’s (1946) results on the two-moment chi-squared

approximation for quadratic forms, ε′
k(W

0
k)1/2H0

k(W0
k)1/2εk and

ε′
k(W

0
k)1/2(I − H0

k)(W0
k)1/2εk (also see Loader 1999, p. 161). Fur-

thermore, we adopt Cleveland and Devlin’s (1988) results to approxi-
mate the ratio of quadratic forms,

ε′
k(W

0
k)1/2H0

k(W0
k)1/2εk

ε′
k(W

0
k)1/2(I − H0

k)(W0
k)1/2εk

,

by an F distribution. Consequently, the second term can be written as

EY

{ K0∑

k=1

[
{tr(W0

k)}2 (σ 0
k )2

ε′
k(W

0
k)1/2(I − H0

k)(W0
k)1/2εk

]}

≈
K0∑

k=1

{tr(W0
k)}2 δk1/δk2

δ2
k1/δk2 − 2

, (A.3)

where δk1 = tr{(Ik − H0
k)W0

k} and δk2 = tr[{(I − H0
k)W0

k}2]. The third
term can be written as

EY

{ K0∑

k=1

[
tr(W0

k)
ε′

k(W
0
k)1/2H0

k(W0
k)1/2εk

ε′
k(W

0
k)1/2(I − H0

k)(W0
k)1/2εk

]}

≈
K0∑

k=1

tr(W0
k)

νk1(δk1/δk2)

δ2
k1/δk2 − 2

, (A.4)

where νk1 = tr(H0
kW0

k). Finally, substituting (A.3) and (A.4) into the

second and third terms on the right side of (A.2), and replacing K0

and W0
k by the candidate component K and the EM estimator Ŵk , we

obtain an estimate of dCL, which is stated in (4).

APPENDIX B: PROOF OF THE THEOREM

Before proving the theorem, we introduce two lemmas, the proofs
of which are straightforward and can be obtained from the third au-

thor. Let rk = n̂k
n − α0

k and Q = exp{∑K
k=K0+1

n̂k
n log(σ̂ 2

k /α̂2
k )}. Also,

define R = exp{∑K0

k=1 rk log(σ̂ 2
k /α̂2

k }, S1 = exp{∑K0

k=1
n̂k(n̂k+pk)

n(n̂k−pk−2)
},

S2 = exp{∑K
k=K0+1

n̂k(n̂k+pk)

n(n̂k−pk−2)
}, and δ = ∏K0

k=1(σ̂ 2
k /α̂2

k )α
0
k −

∏K0

k=1(σ̂ 2
k /(α0

k )2)α
0
k .

Lemma B.1. Under Assumptions 1, 2, and 3,

Q = 1 + op(Ln(ξ)),

R = 1 + op(Ln(ξ)),

exp

{
n̂k(n̂k + pk)

n(n̂k − pk − 2)

}

= exp(α0
k )

{
1 + 2

n
+ 2Ln,k(ξ)

(σ 0
k )2

+ op(Ln,k(ξ))

}

for k = 1, . . . ,K0,

S1 = exp

( K0∑

k=1

α0
k

){
1 +

K0∑

k=1

[
2

n
+ 2Ln,k(ξ)

(σ 0
k )2

]
+ op(Ln(ξ))

}
,

S2 = exp

{
2(K − K0)

n
+ op(Ln(ξ))

}

= 1 + 2(K − K0)

n
+ op(Ln(ξ)),

and

δ = op(Ln(ξ)).
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Lemma B.2. Under Assumptions 1, 2, and 3,

K0∏

k=1

{(
ωk

(α0
k )2

− Ln,k(ξ)

(α0
k )2

+ op(Ln,k(ξ))

)α0
k

×
[

1 + 2

n
+ 2

(σ 0
k )2

Ln,k(ξ) + op(Ln,k(ξ))

]}

=
K0∏

k=1

[
Ak + BkLn,k(ξ) + op(Ln,k(ξ))

]
(B.1)

and

K0∏

k=1

[
Ak + BkLn,k(ξ) + op(Ln,k(ξ))

]

=
K0∏

k=1

Ak +
K0∏

k=1

BkLn,k(ξ)

K0∏

j �=k

Aj + op(Ln(ξ)). (B.2)

To prove the theorem, we re-express the MRC in (5) as

MRCE = exp

(
1

n
MRC

)
. (B.3)

For ξ ∈A0
n, it follows from Lemma B.1 that

MRCE

= exp

{ K∑

k=1

n̂k

n
log

(
σ̂ 2

k

α̂2
k

)
+

K∑

k=1

n̂k(n̂k + pk)

n(n̂k − pk − 2)

}

=
K0∏

k=1

[(
σ̂ 2

k

(α0
k )2

)α0
k

exp

{
n̂k(n̂k + pk)

n(n̂k − pk − 2)

}]
S2QR + δS1S2QR

=
K0∏

k=1

{(
ωk

(α0
k )2

− Ln,k(ξ)

(α0
k )2

+ op(Ln,k(ξ))

)α0
k

× exp(α0
k )

(
1 + 2

n
+ 2Ln,k(ξ)

(σ 0
k )2

+ op(Ln,k(ξ))

)}

×
(

1 + 2(K − K0)

n
+ op(Ln(ξ))

)
+ op(Ln(ξ)). (B.4)

Equations (B.3) and (B.4) together with Lemma B.2 yield

MRCE = Wn

K0∏

k=1

Ak + Wn

K0∑

k=1

BkLn,k(ξ)

K0∏

j �=k

Aj + op(Ln(ξ))

= Wn

K0∏

k=1

Ak + Ln(ξ) + op(Ln(ξ)). (B.5)

Next, using Assumption 1, we obtain

MRCE(ξ̂ ) = min
ξ∈An

MRCE(ξ) = min
ξ∈A0

n

MRCE(ξ), (B.6)

for large n. Therefore, we omit the constant term Wn
∏K0

k=1 Ak from
MRCE(ξ) in (B.5). Using (B.6), we can show that

Ln(ξ̂ ) + Rn(ξ̂ ) = min
ξ∈A0

n

(
Ln(ξ) + Rn(ξ)

)
, (B.7)

where Rn(ξ) = op(Ln(ξ)).

Finally, it follows from (B.6) and (B.7) that

1 = Ln(ξ̄ )

Ln(ξ̄ )

≥
infξA0

n
(Ln(ξ) + Rn(ξ))

Ln(ξ̄ )
− Rn(ξ̄ )

Ln(ξ̄ )

= Ln(ξ̂ ) + Rn(ξ̂ )

Ln(ξ̄ )
− Rn(ξ̄ )

Ln(ξ̄ )

≥ Ln(ξ̂ )

Ln(ξ̄ )
− |Rn(ξ̂ )|

Ln(ξ̄ )
− |Rn(ξ̄ )|

Ln(ξ̄ )

≥ Ln(ξ̂ )

Ln(ξ̄ )
− sup

ξ∈A0
n

|Rn(ξ)|
Ln(ξ)

· Ln(ξ̂ )

Ln(ξ̄ )
− |Rn(ξ̄ )|

Ln(ξ̄ )

= Ln(ξ̂ )

Ln(ξ̄ )

(
1 − sup

ξ∈A0
n

|Rn(ξ)|
Ln(ξ)

)
− |Rn(ξ̄ )|

Ln(ξ̄ )
.

This inequality further implies that

1 = Ln(ξ̄ )

Ln(ξ̄ )

≥ Ln(ξ̂ )

Ln(ξ̄ )

(
1 − sup

ξ∈A0
n

|Rn(ξ)|
Ln(ξ)

)
− sup

ξ∈A0
n

|Rn(ξ)|
Ln(ξ)

−→ Ln(ξ̂ )

Ln(ξ̄ )
≥ 1

in probability as n tends to infinity. This completes the proof of the
theorem.

APPENDIX C: THE MIXTURE REGRESSION
CRITERION FOR THE MIXTURE

QUASI–LIKELIHOOD MODEL

The complete-data log-likelihood discrepancy of the mixture quasi-
likelihood model (6) is

dCL = −2EY
[
EY∗ {L(φ̂; τ̂ ,Y∗,X)}]

= −2EYEY∗

{ K∑

k=1

n∑

j=1

τ̂jk
[
log α̂k + log fk(y

∗
j ;xj, β̂k, σ̂k)

]
}

=
K0∑

k=1

EY

[
tr(Ŵk) log

(
σ̂ 2

k

α̂2
k

)
+ EY∗ {Y∗′ŴkY∗ − 1′Ŵkb(Y∗)}

σ̂ 2
k

− µ0′
k Ŵk θ̂k − 1′Ŵkb(θ̂k)

σ̂ 2
k

]
, (C.1)

where Y∗ is defined as in Section 2.3; µ0
k = (µ0

1k, . . . ,µ
0
nk)

′; µ0
jk =

∂b(θ0
jk)/∂θ0

jk; θ0
jk is the jth element of the canonical parameter in the

kth component of the true model; 1 = (1, . . . ,1)′; α̂k , τ̂jk , and β̂k
can be obtained through the EM algorithm for the generalized lin-
ear mixture model (see Wedel and Kamakura 2000, chap. 7); σ̂ 2

k =
(Ỹk − µ̃k)

′(Ỹk − µ̃k)/ tr(Ŵk); Ỹk = W̃1/2
k Y; µ̃k = W̃1/2

k µ̂k; µk =
(µ1k, . . . ,µnk)

′; W̃k = V̂kŴk; Vk = diag{(∂µk/∂ηk)
2(∂2b(θk)/

∂θk ∂θ ′
k)} is the n × n matrix; the jth diagonal element of Vk is

(∂µjk/∂ηjk)
2(∂2b(θjk)/∂θjk ∂θjk); θk = (θ1k, . . . , θnk)

′; θ̂k , µ̂k , and

V̂k are θk , µk , and Vk evaluated at τ̂ k , α̂k , and β̂k; and τ̂ k and Ŵk are
as defined as in Section 2.3.

Applying the quadratic approximations of θ̂k and b(θ̂k) at βk = β∗
k

and then replacing the Ŵk in the last two terms of (C.1) by W0
k , we
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have

dCL ≈
K0∑

k=1

EY

[
tr(Ŵk) log

(
σ̂ 2

k

α̂2
k

)
+ tr(W0

k)
(σ 0

k )2

σ̂ 2
k

+ (β̂k − β∗
k )′X̃′

kX̃k(β̂k − β∗
k )

σ̂ 2
k

]
,

where (σ 0
k )2 = EY∗ {Y∗′W0

kY∗ − 1′W0
kb(Y∗) − µ0

k
′W0

kθ0
k + 1′ ×

W0
kb(θ0

k)}/ tr(W0
k) and X̃ = W̃1/2

k X. Subsequently, adapting
Jorgensen’s (1987, sec. 4) asymptotic results, we have

dCL ≈ EY

[ K0∑

k=1

{
tr(Ŵk) log

(
σ̂ 2

k

α̂2
k

)}]

+ EY

{ K0∑

k=1

[
tr(Ŵk) tr(W0

k)
(σ 0

k )2

ε′
kW̃1/2

k (I − H̃k)W̃
1/2
k εk

]}

+ EY

{ K0∑

k=1

[
tr(Ŵk)

ε′
kW̃1/2

k H̃kW̃1/2
k εk

ε′
kW̃1/2

k (I − H̃k)W̃
1/2
k εk

]}
, (C.2)

where H̃k = X̃k(X̃′
kX̃k)

−1X̃′
k and εk = Y − µ0

k . Because (C.2) is sim-
ilar to (A.2), we can apply techniques analogous to those used af-
ter (A.2) in Appendix A to obtain the MRC as given in (5), where
n̂k = tr(W̃k) and pk = tr(H̃k).

APPENDIX D: THE MIXTURE REGRESSION
CRITERION FOR THE MIXTURE AUTOREGRESSIVE

TIME SERIES MODEL

Adapting the approach of Brockwell and Davis’ (1991,
chaps. 8.8–8.10), we first define Y = (yp̃+1, . . . , yn)′, X =
(xp̃+1, . . . ,xn)′, xj = (yj−1, . . . , yj−pk )

′, and βk = (γk1, . . . ,

γkpk )
′, where j = p̃ + 1, . . . ,n and k = 1, . . . ,K. Then, the resulting

complete-data log-likelihood discrepancy of the mixture autoregres-
sive time series model (7) is

dCL = −2EY
[
EY∗ {L(φ̂; τ̂ ,Y∗,X)}]

= −2EYEY∗

{ K∑

k=1

n∑

j=p̃+1

τ̂jk
[
log α̂k + log fk(y

∗
j ;xj, β̂k, σ̂k)

]
}

,

where φ̂, τ̂ , and Y∗ are defined as in Section 2.3. This expression is the
same as (A.1) except for the summation, which ranges from p̃+1 to n.
Next, applying the asymptotic results of Brockwell and Davis (1991,
chaps. 8.9 and 8.10) together with algebraic simplifications, we obtain

(β̂k − β∗
k )′X̂′

kX̂k(β̂k − β∗
k ) ≈ ε′

kŴ1/2
k ĤkŴ1/2

k εk

and

σ̂ 2
k ≈ ε′

kŴ1/2
k (I − Ĥk)Ŵ

1/2
k εk

tr(Ŵk)
,

where β∗
k , X̂k , Ĥk , and Ŵ1/2

k are defined as in Section 2.3 and εk is
defined as in (A.2). Consequently, dCL is approximately the same as
the right side of (A.2). Applying the techniques used in Appendix A,
we finally obtain the MRC as in (5).

[Received July 2004. Revised May 2006.]
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