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Abstract

In Markov-switching regression models, we use Kullback–Leibler (KL) divergence between

the true and candidate models to select the number of states and variables simultaneously.

Specifically, we derive a new information criterion, Markov switching criterion (MSC), which

is an estimate of KL divergence. MSC imposes an appropriate penalty to mitigate the over-

retention of states in the Markov chain, and it performs well in Monte Carlo studies with

single and multiple states, small and large samples, and low and high noise. We illustrate the

usefulness of MSC via applications to the U.S. business cycle and to media advertising.
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1. Introduction

Economic systems often experience shocks that shift them from their present state
into another state; for example, nations lurch into recession, government regimes
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change over time, and financial markets exhibit booms and crashes. These states tend
to be stochastic and dynamic: if they occur once, they probably recur. To capture
such probabilistic state transitions over time, Markov-switching models provide an
analytical framework. In economics, Markov-switching models have been used for
investigating the US business cycle (Hamilton, 1989), foreign exchange rates (Engel
and Hamilton, 1990), stock market volatility (Hamilton and Susmel, 1994), real
interest rates (Garcia and Perron, 1996), corporate dividends (Timmermann, 2001),
the term structure of interest rates (Ang and Bekaert, 2002a), and portfolio
allocation (Ang and Bekaert, 2002b), among others. Outside of economics, Markov-
switching models find application in diverse fields such as computational biology
(e.g., Durbin et al., 1998 for gene sequencing), computer vision (Bunke and Caelli,
2001), and speech recognition (Rabiner and Juang, 1993).

To estimate Markov-switching models, Baum and his colleagues (Baum and
Petrie, 1966; Baum et al., 1970) developed the forward–backward algorithm, which
was extended to encompass general latent variable models under the expectation–-
maximization (EM) principle (see Dempster et al., 1977). If the number of states in
Markov-switching models is known, the EM algorithm yields consistent parameter
estimates, and statistical inference proceeds via standard maximum-likelihood
theory (e.g., Bickel et al., 1998). If the number of states is not known, however, the
likelihood ratio test to infer the true number of states breaks down because regularity
conditions do not hold (see Hartigan, 1977; Hansen, 1992; Garcia, 1998).

The number of states is often not known a priori, so we propose applying KL
divergence to determine it. We note that KL divergence has been used in various
model selection contexts (see, e.g., Sawa, 1978; Leroux, 1992; Sin and White, 1996;
Burnham and Anderson, 2002). Specifically, Akaike’s information criterion (AIC,
see Akaike, 1973) provides an estimate of KL distance but, in Markov-switching
models, it misleads the users into selecting too many states (see Section 4.2).
Consequently, one fits spurious regressions in nonexistent states; this misspecifica-
tion results in incorrect inclusion of variables, which reduces the accuracy of
estimated parameters and lowers the precision of model forecasts. Hence, the
problem of simultaneous determination of the number of states to retain in the
Markov chain and the variables to include in the regression model for each retained
state remains open.

The objective of this paper is to develop a new information criterion for
simultaneous selection of states and variables in Markov switching models. To
accomplish this goal, we obtain an explicit approximation to the KL distance for the
class of Markov switching regression models. The resulting Markov switching
criterion (MSC) imposes an appropriate penalty, and so it mitigates the over-
retention of states in the Markov chain and alleviates the tendency to over-fit the
number of variables in each state. Moreover, in Monte Carlo studies, MSC performs
well in single and multiple states, small and large samples, and low and high noise.
Finally, it not only applies to Markov-switching regression models, but also
performs well in Markov-switching autoregression models.

We present two empirical applications of MSC to understand (a) the business
cycle in the US economy and (b) the effectiveness of media advertising. In the
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business cycle application, based on the minimumMSC value, we retain a three-state
model for US GNP growth with one recessionary state and two expansionary states.
The second expansionary state occurred mostly after 1984, and it exhibits slower
growth, lower volatility, and longer duration than the first one. This finding supports
the notion of ‘‘great moderation’’ (see Kim and Nelson, 1999a; McConnell and
Perez-Quiros, 2000; Stock and Watson, 2003). In the advertising application, MSC
suggests the retention of a two-state Markov-switching model for sales and
advertising of the Lydia Pinkham brand; the results reveal new insights not
discernible from the standard regression model.

We organize this paper as follows. In Section 2, we describe the model structure
and estimation algorithm for multiple state Markov-switching models. We derive the
information criterion in Section 3 and investigate its properties and performance
under various conditions in Section 4. Section 5 presents empirical applications to
the business cycle and media advertising. Section 6 concludes the paper by
identifying avenues for future research.
2. Estimating N-state Markov-switching models

We present the model structure, establish notation, and briefly describe the
estimation of Markov-switching regressions, conditional on knowing the number of
states N.

2.1. Model structure

Consider an N-state Markov chain. Let st denote an N� 1 selection vector with
elements sti ¼ 1 or 0, according to whether the Markov chain resides in the state i

ði ¼ 1; . . . ; NÞ. The unobserved state vector st evolves according to an ergodic
Markov chain with the transition probability matrix

P ¼

p11 � � � p1N

..

.
pij

..

.

pN1 � � � pNN

2
664

3
775, (1)

where pij ¼ pr stþ1;j ¼ 1
�� sti ¼ 1

� �
and

PN
j¼1pij ¼ 1 for every i ¼ 1; . . . ; N. We define

the ergodic probabilities of the Markov chain by the vector p ¼ ðp1; . . . ;pN Þ
0; wherePN

i¼1pi ¼ 1:
At time t, when the chain is in state i (i.e., sti ¼ 1), we observe the dependent

variable yt according to the regression model

yt ¼ x0tbi þ si�ti, (2)

where �ti�Nð0; 1Þ is independently distributed over time t ¼ 1; . . . ; T , xt contains K

explanatory variables, and the K� 1 vector bi denotes their marginal impact when
the chain is in the state i. If the chain moves to the state j, the marginal impact of
exogenous variables is bj with the corresponding level of noise s2j : To capture this
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‘‘switching’’ in regression models, we rewrite (2) as follows:

yt ¼ x0tbst þ sst�t, (3)

where b ¼ b1; . . . ;bN

� �
; s ¼ s1; . . . ;sNð Þ; and the selection vector st indicates the

state at time t. The matrix b and vector s have dimensions K�N and 1�N,
respectively. Eqs. (1) and (3), together, constitute the N-state Markov-switching
regression model. When xt includes lagged values of yt, we obtain the N-state
Markov-switching autoregression model (e.g., Hamilton, 1989). Next, we describe an
EM algorithm to estimate this model.
2.2. EM algorithm

Suppose we observe the complete data, including the sequences of both the
observed variables Y ¼ ðyt;x

0
tÞ : t ¼ 1; . . . ;T

� �
and the state variables S ¼

st : t ¼ 1; . . . ;Tf g: Then the complete data log-likelihood function Lc is

Lcðy;Y ;SÞ ¼ L b;s;Y jSð Þ þ L P;Sð Þ

¼
XT

t¼1

XN

i¼1

sti log f i yt; bi; si

� �
þ
XT�1
t¼1

XN

i¼1

XN

j¼1

stistþ1;j log pij þ
XN

i¼1

s1i log pi,

ð4Þ

where f i yt; bi;si

� �
¼ 2ps2i
� ��1=2

exp �1
2

yt � x0tbi

� �2.s2i� �
is the density of yt condi-

tional on sti ¼ 1 (see McLachlan and Peel, 2000, p. 329).
In the E-step, we evaluate the expectation of Lc with respect to the unobserved

latent states S, given the observed data Y and provisional estimates of y. Let yl

denote the provisional estimates at the lth iteration, and Q y; yl
� �

¼ E LcjY ; y
l

� 	
:

Because Lc is linear in sti, stist+1,j, and s1i, we obtain

Q y; yl
� �

¼
XT

t¼1

XN

i¼1

xðlÞti log f i yt; bi;si

� �
þ
XT�1
t¼1

XN

i¼1

XN

j¼1

tðlÞtij log pij þ
XN

i¼1

xðlÞ1i log pi,

(5)

where tðlÞtij ¼ E stistþ1;j

��Y ; yl
� �

and xðlÞti ¼ E stijY ; y
l

� �
: To compute tðlÞtij ; x

ðlÞ
ti

� �
; we apply

the forward–backward algorithm (e.g., McLachlan and Peel, 2000, p. 330), which
yields

tðlÞtij ¼
a
ðlÞ
ti p
ðlÞ
ij f i ytþ1; y

l
� �

b
ðlÞ
tþ1;jPN

i¼1

PN
j¼1a

ðlÞ
ti p
ðlÞ
ij f i ytþ1; y

l
� �

b
ðlÞ
tþ1;j

(6)

and

xðlÞti ¼
XN

j¼1

tðlÞtij . (7)
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The ‘‘forward’’ probabilities ati are given by the forward recursion

a
ðlÞ
tþ1;i ¼

XN

j¼1

a
ðlÞ
tj p
ðlÞ
ij

 !
f i ytþ1; y

l
� �

, (8)

and the ‘‘backward’’ probabilities btj are given by the backward recursion

b
ðlÞ
tj ¼

XN

i¼1

p
ðlÞ
ij f i ytþ1; y

l
� �

b
ðlÞ
tþ1;i. (9)

We initialize these recursions by setting a1i ¼ pðlÞi f iðy1; y
l
Þ and bTj ¼ 1, where pðlÞ ¼

pðlÞ1 ; . . . ;p
ðlÞ
N

� �0
is the principal eigenvector of PðlÞp ¼ p:

In the M-step, we maximize Qðy; yl
Þ with respect to y ¼ vec(b,s,P) to obtain the

closed form estimates for the (l+1)th iteration:

bðlþ1Þi ¼ X 0W
ðlÞ
i X

� ��1
X 0W

ðlÞ
i y, (10)

sðlþ1Þi

� �2
¼ y� Xbðlþ1Þi

� �0
W
ðlÞ
i y� Xbðlþ1Þi

� �.
T
ðlÞ
i , (11)

and

p
ðlþ1Þ
ij ¼

PT�1
t¼1 t

ðlÞ
tijPT�1

t¼1 x
ðlÞ
ti

, (12)

where X ¼ ðx1; . . . ;xT Þ
0; y ¼ ðy1; . . . ; yT Þ

0; W
ðlÞ
i ¼ diag xðlÞi

� �
; xðlÞi ¼ ðx

ðlÞ
1i ; . . . ; x

ðlÞ
ti ; . . . ;

xðlÞTiÞ
0; and T

ðlÞ
i ¼ tr W

ðlÞ
i

� �
: Using the provisional estimates yl , we obtain the new

estimates yðlþ1Þ ¼ vec bðlþ1Þ;sðlþ1Þ;Pðlþ1Þ
� �

via Eqs. (10)–(12). We iterate the E- and

M-steps until the absolute difference yðlþ1Þ � yðlÞ
�� �� decreases below a preset tolerance.

The resulting vector ŷ ¼ vec b̂; ŝ; P̂
� �

converges to the maximum likelihood

estimates, which are consistent and asymptotically normal (Bickel et al., 1998).
For finite sample properties, see Psaradakis and Sola (1998). We close this section
with two remarks.

Remark 1. We enhance the stability of this algorithm as follows. First, to avoid
singularities in the likelihood function and reduce the chance of spurious local
maxima, we follow Hathaway’s (1985) suggestion to set a lower bound on the
relative variances across states. Second, to prevent underflow of forward
probabilities in (8), for each t and i ¼ 1,y,N, we follow Leroux and Puterman’s
(1992) recommendation to multiply ati by 10�r, where the constant r is defined such
that 10�rPN

i¼1ati lies between 0.1 and 1.0. Because ati, appears in both the numerator
and denominator of (6), the value of tðlÞtij does not change. Similarly, we prevent
underflow of backward probabilities in (9).
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Remark 2. This EM algorithm enables the estimation of Markov-switching models
with many observations because the forward–backward method is linear in T.
Furthermore, because both the E- and M-steps are available in closed form, the EM
algorithm is robust to numerical uncertainties encountered by quasi-Newton methods.
For example, Hamilton (1990, pp. 40-41) notes that ‘‘ymethods that seek to
approximate the sample Hessian can easily go astray yBy contrast, the EM
algorithm by construction finds an analytical interior solution to a particular
subproblem.’’ Nonetheless, like quasi-Newton methods, the EM does not guarantee
convergence to global maxima (see McLachlan and Krishnan, 1997, p. 34). Finally,
the EM algorithm can also be used to obtain Bayesian modal values by augmenting
the expected complete data likelihood with the logarithm of prior density; see
Dempster et al. (1977, p. 6) for this connection between EM and Bayesian analysis and
Kim and Nelson (1999b, Chapter 9) for implementation in Markov-switching models.
3. Deriving Markov-switching criterion

In the above estimation, the number of states N is assumed known, which need not
be the case in practice. To determine the number of states, we approximate the true
data generating process (DGP) using several candidate models, quantify the
information loss between the DGP and each candidate model, and then choose
the model that entails the minimum expected information loss (e.g., Burnham and
Anderson, 2002). Specifically, let g(Y*) denote the probability density function of the
DGP and f(Y*;y) be the density function for a candidate model, where Y* represents
the data used for evaluating the model. As in Sawa (1978) and Sin and White (1996),
we quantify information loss using the KL divergence, which is defined as

dKLðg; f ; yÞ ¼ EY� log
gðY �Þ

f ðY �; yÞ


 �
, (13)

where dKLX0, and EY�ð�Þ denotes the expectation with respect to the data generating
density g. Eq. (13) measures the divergence between the two densities g and f,
indicating the information loss entailed when we approximate the DGP using a
candidate model. Recently, Zellner (2002, p. 43) interprets dKL as the difference in
expected log heights of the two densities; for other divergence measures, see Rényi
(1970) or Linhart and Zucchini (1986, p. 18).

The information loss in (13) depends on the model parameters y. In practice, we
evaluate (13) at ŷ obtained by fitting the candidate model f with the observed sample
Y. To remove the dependence of (13) on the particular sample Y, we adopt Akaike’s
(1985) approach to average dKL across different independent samples Y drawn from
the same DGP and choose a model that minimizes the expected information loss:

d̄KLðg; f ; ŷÞ ¼ EY EY� log
gðY �Þ

f ðY �; ŷÞ

" # !

¼ EY EY� log g Y �ð Þð Þ½ �ð Þ � EY EY� log f Y �; ŷ
� �� �h i� �

,
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where EY( � ) indicates expectation with respect to the density g which generates the
estimation sample, Y.

Because EY EY� log g Y �ð Þð Þ½ �ð Þ remains invariant across all candidate models (i.e.,
constant across different choices of f), it is sufficient to select the model that
minimizes

~dKL ¼
~dKLðg; f ; ŷÞ ¼ �2EY EY� log f Y �; ŷ

� �� �h i� �
, (14)

where the dependence on g arises from the double expectation, and the
multiplication by two is for convenience. To derive an estimator for ~dKL; we
consider the Markov-switching regression model in (1) and (3) in which xt does not
contain lagged dependent variables. In the appendix, we simplify (14) and obtain the
Markov-switching criterion,

MSC ¼ �2 log f ðY ; ŷÞ
� �

þ
XN

i¼1

T̂ i T̂ i þ liK
� �

diT̂ i � liK � 2
, (15)

where logðf ðY ; ŷÞÞ is the maximized log-likelihood value, T̂ i ¼ trðŴ iÞ; Ŵ i ¼

diag x̂1i; . . . ; x̂Ti

� �
; di ¼ E p�i =p̂i

� 	
; li ¼ E ðp�i =p̂iÞ

2
� 	

; and p�i is the ith element of the
principal eigenvector of P�p� ¼ p� for the best estimates y� ¼ vec b�;s�;P�ð Þ ¼

argminyEY� � log f ðY �; yÞ½ �: The subsequent remarks elaborate the properties of
MSC and its implementation in practice.

Remark 3. The first term of MSC measures the lack of fit; its second term imposes a
penalty for including redundant states and variables. Thus, MSC balances the trade-
off between improving a model’s fit to the data and achieving parsimony of the fitted
model. To select the candidate model, we compute (15) for varying choices of states
and variables (N, K) and retain the one that attains the smallest value.

Remark 4. In regression models without Markov switching, MSC is equivalent to
both Hurvich and Tsai’s (1989) criterion in finite samples and Akaike’s (1973)
criterion in large samples. Specifically, in regression models, N ¼ d ¼ l ¼ 1, and so
MSCN¼1 ¼ �2 logðf ðY ; ŷÞÞ þ TðT þ KÞ=ðT � K � 2Þ; which equals Hurvich and
Tsai’s (1989, p. 300) AICC criterion. Furthermore, by subtracting T from MSCN ¼ 1,
we obtain �2 logðf ðY ; ŷÞÞ þ 2ðK þ 1ÞfT=ðT � K � 2Þg; which approaches Akaike’s
(1973) AIC ¼ �2 logðf ðY ; ŷÞÞ þ 2ðK þ 1Þ in large samples. Thus, the proposed MSC
generalizes the applicability of these criteria to N-state Markov-switching regression
models.

Remark 5. When N41, MSC imposes penalty through di ¼ E p�i =p̂i

� 	
and li ¼

E ðp�i =p̂iÞ
2

� 	
: Because the distribution of p̂i is not known, to implement MSC, we

investigate the behavior of d̄i ¼ E p�i =p̄i

� 	
and l̄i ¼ E ðp�i =p̄iÞ

2
� 	

; where p̄i ¼

T�1
PT

t¼1sti and E½p̄i� ¼ p�i : For d̄i; we invoke Jensen’s inequality to obtain d̄i ¼

p�i E 1=p̄i

� 	
Xp�i =E p̄i½ � ¼ 1: In other words, a lower bound for d̄i is unity, which yields

a larger value of MSC than would result from any other di41. For l̄i; we applied

Gabriel’s (1959) formula for the distribution of p̄i to compute l̄i for various N�N
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transition matrices P. These computations indicated that l̄i is an increasing function
of the number of states N. Using these results, we set di ¼ 1 and li ¼ 1, N, and N2 to
implement MSC. In Section 4, Monte Carlo simulations show that MSC with di ¼ 1
and li ¼ N performs satisfactorily.

Remark 6. The application of MSC in (15) is not specific to the EM algorithm; it can
be used in conjunction with other estimation approaches. For example, one could
obtain logðf ðY ; ŷÞÞ via quasi-Newton methods and find T̂ i using the smoother in
Hamilton (1990) or Kim (1994). Thus, the value of MSC in (15) can be computed to
determine states and variables jointly.

Remark 7. We used the average KL divergence, d̄KL; to remove dependence of (13)
on the estimation sample Y. Alternatively, we can consider the possibility of
averaging by using a posterior density for y and a predictive density for Y*. This
approach may provide better results in small samples, an issue that needs further
investigation.

Remark 8. Bates and Granger (1969) and Leamer (1978) suggest combining multiple
models rather than selecting the single best one. To this end, one could follow
Burnham and Anderson (2004, pp. 269–274) by computing Dk ¼MSCk�MSCmin

for each model fk relative to the model that yields the minimumMSC value, and then
using the weights wk ¼ expð�0:5DkÞ=

P
k expð�0:5DkÞ to conduct multi-model

inference. Furthermore, to assess degrees of confidence in alternative models,
Burnham and Anderson (2002, p. 170) offer the following guidelines: Dk between 0
and 2 indicates a substantial empirical support for the model fk; Dk between 4–7
suggests considerably less support; Dk410 implies essentially no empirical evidence
in favor of that model (also see Raftery, 1996, p. 252 for guidelines when using Bayes
factors). Finally, alternative approaches for incorporating model uncertainty include
forecast combinations (Timmermann, 2005), Bayesian model averaging (e.g.,
Hoeting et al., 1999), frequentist model averaging (Hjort and Claeskens, 2003),
and adaptive mixing of methods (Yang, 2001).

Remark 9. We note that model comparisons based on AIC are asymptotically
equivalent to those based on Bayes factors when prior information is as precise as
the likelihood (Kass and Raftery, 1995, p. 790). When prior information is small
relative to the information contained in data, the Bayesian information criterion
(BIC) tends to select models with highest posterior probability. In investigating the
number of states to retain in Markov-switching autoregressive models, Psaradakis
and Spagnolo (2003, p. 246) conclude that BIC tends to underestimate the number of
states. We encourage further research to investigate such comparisons using the
proposed MSC.

Remark 10. Here we elucidate the theoretical justification for using KL divergence in
model selection. In information theory, Shannon’s (1948) entropy is defined as
�
P

xpðxÞ logðpðxÞÞ for a discrete random variable with probability mass function
p(x). Generalizing Shannon’s entropy to two continuous density functions g and f,
Kullback and Leibler (1951) quantify ‘‘information’’ by defining dKL ¼
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R
gðxÞ logðgðxÞ=f ðxÞÞdx and by connecting it to R. A. Fisher’s notion of sufficient

statistics. Akaike (1973, 1985) not only extends KL information to quantify expected
information loss i:e:;�E E log f ðxÞð Þ½ �½ �ð Þ; but also deepens the connection with
likelihood theory (see deLeeuw 1992) by showing that (a) the maximized log-
likelihood value is a biased estimate of expected information loss, and (b) the
magnitude of asymptotic bias equals the number of estimable parameters in the
approximating model f. These theoretical findings furnish the justification for using
KL divergence as a bridge between estimation theory and model selection, thereby
unifying them under a common optimization framework (for further details, see
Burnham and Anderson, 2004, p. 268).
4. Monte Carlo studies

Here we describe the simulation settings as well as the model selection procedure,
and then we present Monte Carlo results to illustrate the properties and performance
of MSC. We also explore the applicability of MSC to Markov-switching
autoregression models.

4.1. Simulation settings and model selection procedure

We investigate the following five settings:
(i)
 Markov-switching regression: the true model consists of two states (N0
¼ 2) and

three variables in each state including an intercept. The true regression coefficients
are b0 ¼ b01;b

0
2

� �
; where b01 ¼ ð1; 2; 3Þ

0 and b02 ¼ ð4; 3; 2Þ
0: The explanatory

variables are stored in the T� 3 matrix X0, whose first column equals one and
second and third columns are randomly drawn from a standard normal
distribution. The N0

� 1 state variable s0t is a Markov chain with transition
probabilities: p0

ii ¼ 0:95 and p0
ij ¼ 0:05 for each i, j ¼ 1,2. We obtain the dependent

variable using the model in (3), yt ¼ x0
t

� �0b0s0t þ s0s0t �
0
t ; where x0

t denotes the tth
row of X0, t ¼ 1,2,y,T ¼ 250, �0t�Nð0; 1Þ; and s0 ¼ ðs01;s

0
2Þ ¼ ð0:5; 0:5Þ:

In each state, we consider five candidate variables, which are stored in the matrix X

of dimension T� 5. The first three columns of X are the same as X0, and we
randomly draw the last two columns from the standard normal distribution. We
consider four candidate states (i.e., N ¼ 1,y,4), and the candidate regression
models include up to five variables from X in a sequentially nested fashion. Thus,
we have 20 possibilities (4 states by 5 variables) from which to choose the true
model.
(ii)
 Markov-switching regression with small sample and high noise: we consider two
variations from the settings in (i). First, to study small sample performance, we
conduct the above simulations using T ¼ 100. Second, we set s0i ¼ 1 for both
T ¼ 100 and 250 to understand the effect of a higher noise level.
(iii)
 Markov-switching autoregression: we conduct the simulation in (i) for
autoregressive models, where the tth rows of X0 and X contain (1, yt�1, yt�2),
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and (1, yt�1, yt�2, yt�3, yt�4), respectively, for t ¼ 5,6,y,T. The true coefficients,
b01 ¼ 1; 0:2; 0:3ð Þ

0 and b02 ¼ 3; 0:5; 0:2ð Þ
0; satisfy the stationarity condition.
(iv)
 Markov-switching autoregression with small sample and high noise: analogous to
(ii), we investigate two variations from the settings in (iii).
(v)
 Single state model: we investigate the case with N0
¼ 1 to examine whether MSC

leads to spurious Markov-switching structure when the true model is a standard
regression. For fixed regressors, we use b0 ¼ ð1; 2; 3Þ0; for autoregression,
b0 ¼ ð1; 0:2; 0:3Þ0.
We conduct 1000 repetitions in each of the above settings to assess how often
MSC selects the true model.

We employ the following model selection procedure for each of the 20 state-
variable combinations {(N,K): N ¼ 1,y, 4, K ¼ 1,y, 5}. First, we choose initial
parameter values using the K-means method (MacQueen, 1967) to classify
observations in the matrix (y, X) into N states. Then, we apply the EM algorithm
to estimate the Markov-switching regression model. Next, we compute MSC in (15).
We also constrain the term diT̂ i � liK � 2

� �
in (15) to exceed unity in each

realization to ensure positive penalty. Finally, we select the model that yields the
smallest MSC value across all the 20 state-variable combinations.
4.2. Monte Carlo results

Here we present one figure and five tables to illustrate the accuracy and
performance of MSC. In addition, we substantiate the claim that AIC overestimates
the number of states in Markov-switching models.

Accuracy of MSC. We assess the accuracy of MSC by computing its proximity to the
true KL distance. To this end, we estimate the true KL distance ~dKL in (14) using the
three steps: (a) randomly draw an estimation sample Y to obtain the EM estimates ŷ;
(b) draw a holdout sample Y* to evaluate logðf ðY �; ŷÞÞ; (c) perform 100 repetitions
with different holdout samples Y*’s to estimate EY� ½logðf ðY

�; ŷÞÞ�: We repeat the
steps (a)–(c) 100 times for different estimation samples Y to evaluate the double-
expectation in (14).

Fig. 1 presents the proximity plots for the MSC values from (15) using li ¼ N

for the setting (i) in Section 4.1. Panel A presents the results for state selection.
It shows that both MSC and ~dKL achieve their minimum at the true number of
states, i.e., N0

¼ 2. Furthermore, MSC and ~dKL are close when NpN0; while
MSC exceeds ~dKL when N4N0. In other words, MSC approximates ~dKL

reasonably well and imposes a larger penalty when the number of states exceeds
those in the data generating process. This larger penalty mitigates overesti-
mation of the number of states. Panel B, which presents the results for
variable selection, depicts that MSC and ~dKL are uniformly close. Thus, for the
purposes of model selection, the proposed MSC reasonably approximates the KL
distance.
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Performance of MSC. We investigate the simultaneous selection of states and
variables in Markov-switching regression models (see the setting (i) in Section 4.1).
We assess the performance of a criterion by the relative frequency of selecting
various states and variables, while the measure of accuracy is how often the criterion
selects the correct number of states that were used in the DGP. Table 1 reports the
frequency of correct state and variable selection using MSC with l ¼ 1, N and N2.
(Note that the subscript i on l is suppressed in the rest of the paper.) For l ¼ 1,
Panel A shows that incorrect model selection is asymmetric. Specifically, the zeros in
Panel A reveal that MSCl¼1 never underestimates the number of states or variables.
But, MSCl¼1 correctly selects two states 360 times and three variables 666 times out
of 1000 occasions. Consequently, the joint frequency of selecting the correct states
and variables is only 30.9%. Despite this unsatisfactory performance, we note that
the conditional frequency of variable selection 0; 0; 309

360
; 29
360
; 22
360

� �
is satisfactory. This

finding can be explained using Panel B of Fig. 1, which shows that MSC estimates
the true KL distance accurately when the number of states is known. More
importantly, this finding underscores the insight that the model selection
performance can be improved if we determine the true states accurately. To this
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Table 1

Joint selection frequency in 1000 realizations (fixed regressors)

Variables (K) States (N) 1 2 3 4 Column sum

Panel A. MSCl¼1

1 0 0 0 0 0

2 0 0 0 0 0

K0 ¼ 3 0 309 190 167 666

4 0 29 85 97 211

5 0 22 47 54 123

Row sum 0 360 322 318 1000

Panel B. MSCl¼N

1 0 0 0 0 0

2 0 0 0 0 0

K0 ¼ 3 0 992 0 0 992

4 0 8 0 0 8

5 0 0 0 0 0

Row sum 0 1000 0 0 1000

Panel C. MSCl¼N2

1 0 0 0 0 0

2 0 0 0 0 0

K0 ¼ 3 0 1000 0 0 1000

4 0 0 0 0 0

5 0 0 0 0 0

Row sum 0 1000 0 0 1000
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end, we investigate the performance of MSC with l ¼ N and N2 as stated in
Remark 5.

For l ¼ N, Panel B indicates a marked improvement in model selection
performance. Specifically, MSCl ¼ N correctly selects the two-state model in each
of the 1000 realizations. We explain this improvement using Panel A of Fig. 1, which
exhibits that MSCl¼N imposes larger penalty than the KL distance, thus mitigating
the tendency to fit too many states. Moreover, we find diminishing returns to further
increases in penalty via l ¼ N2 because performance improves marginally beyond
that due to MSCl¼N (see Panel C in Table 1).

Table 2 demonstrates the robustness of these findings via the simulation setting
(ii). When we increase the noise level from s0i ¼ 0:5 to 1, the performance of MSCl¼1

further deteriorates. The joint frequency of correctly selecting both the states and
variables decreases from 309 to 124. In contrast, MSCl¼N and MSCl¼N2 perform
well, as evidenced by the small decrease in the joint frequency from 992 to 981 and
from 1000 to 998, respectively. In other words, these small decreases indicate that the
performance of both the criteria do not deteriorate substantially as the noise level
increases. We observe qualitatively similar findings when the sample size decreases
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Table 2

Frequency of correctly selecting both states and variables in 1000 realizations (fixed regressors)

MSCl¼1 MSCl¼N MSCl¼N2

Large sample (T ¼ 250)

Low noise (s0 ¼ 0:5) 309 992 1000

High noise (s0 ¼ 1) 124 981 998

Small sample (T ¼ 100)

Low noise (s0 ¼ 0:5) 521 951 861

High noise (s0 ¼ 1) 393 907 741
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from T ¼ 250 to 100. It is worth noting that MSCl¼N is less sensitive to noise level in
small samples than MSCl¼N2 : Specifically, as the noise level increases for T ¼ 100,
the joint selection frequency of MSCl¼N decreases by 4.6% (from 951 to 907)
compared to 13.9% for MSCl¼N2 (from 861 to 741). In other words, MSCl¼N

outperforms MSCl¼1 and MSCl¼N2 when both the sample size is small and the
signal is weak.

We repeat the above analyses for the Markov-switching autoregression models
described in the setting (iii). Table 3 reports the joint selection frequency by MSC
with l ¼ 1, N, and N2 in 1000 realizations. As before, incorrect model selection is
asymmetric; MSCl¼1 never understates the number of states and seldom under-
estimates the number of variables. MSCl¼N outperforms MSCl¼1 with 979 correct
selections out of 1000 occasions (see Panel B in Table 3). This superior performance
is due to the penalty imposed by MSCl¼N , which mitigates the tendency to fit
excessive states. We can marginally improve this performance from 979 to 984 by
using a stronger penalty via l ¼ N2 (compare Panels B and C in Table 3).

Table 4 shows that these findings are robust to the various scenarios in the setting
(iv). As the noise level increases in large samples, MSCl¼1 performs poorly, whereas
MSCl¼N and MSCl¼N2 perform satisfactorily as evidenced by smaller decreases in
the joint frequency. We obtain qualitatively similar results for the small sample case.
Moreover, MSCl¼N is less sensitive to the noise level in small samples than
MSCl¼N2 ; for example, the correct selection frequency of MSCl¼N decreases by 46%
(from 744 to 402) compared to 99.4% for MSCl¼N2 (from 171 to 1). Thus, MSCl¼N

outperforms MSCl¼1 and MSCl¼N2 when both the sample size is small and the
signal is weak.

Single-state model. While MSC detects Markov switching when it does exist, can
MSC reject Markov switching when it does not exist? To answer this question, we
examine the setting (v) and use MSC to select the number of states (but not
variables). In Table 5, Panels A and B show the correct selection frequency for the
fixed regressor and autoregression settings, respectively. We find that MSCl¼1

performs poorly regardless of the noise level or the sample size. However, the last
two columns indicate that MSCl¼N and MSCl¼N2 correctly select a single-
state model more than 90% of the occasions. Thus, MSCl¼N and MSCl¼N2 do
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Table 4

Frequency of correctly selecting both states and variables in 1000 realizations (autoregression)

MSCl ¼ 1 MSCl ¼ N MSCl¼N2

Large sample (T ¼ 250)

Low noise (s0 ¼ 0:5) 524 979 984

High noise (s0 ¼ 1) 264 974 785

Small sample (T ¼ 100)

Low noise (s0 ¼ 0:5) 648 744 171

High noise (s0 ¼ 1) 389 402 1

Table 3

Joint selection frequency in 1000 realizations (autoregression)

Variables (K) States (N) 1 N0 ¼ 2 3 4 Column sum

Panel A. MSCl¼1

1 0 0 0 0 0

2 0 0 0 1 1

K0 ¼ 3 0 524 169 78 771

4 0 52 62 36 150

5 0 26 33 19 78

Row sum 0 602 264 133 1000

Panel B. MSCl¼N

1 0 0 0 0 0

2 0 3 0 0 3

K0 ¼ 3 0 979 1 0 980

4 0 16 0 0 16

5 0 1 0 0 1

Row sum 0 999 1 0 1000

Panel C. MSCl¼N2

1 0 0 0 0 0

2 0 14 0 0 14

K0 ¼ 3 0 984 0 0 984

4 0 2 0 0 2

5 0 0 0 0 0

Row sum 0 1000 0 0 1000
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not yield spurious Markov-switching structure when the true model is a standard
regression.

We close this section by substantiating the claim in the Introduction that the AIC-
based estimate of KL divergence retains too many states and variables. We compute
AIC ¼ �2 log f ðy; ŷÞ þ 2d; where d ¼ ðNK þN2Þ denotes the number of free
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Table 5

Frequency of correctly selecting a single-state model in 1000 realizations

MSCl¼1 MSCl¼N MSCl¼N2

Panel A. Fixed regressors

Large sample (T ¼ 250)

Low noise (s0 ¼ 0:5) 92 992 999

High noise (s0 ¼ 1) 38 991 1000

Small sample (T ¼ 100)

Low noise (s0 ¼ 0:5) 204 994 997

High noise (s0 ¼ 1) 258 998 1000

Panel B. Autoregression

Large sample (T ¼ 250)

Low noise (s0 ¼ 0:5) 96 980 1000

High noise (s0 ¼ 1) 51 973 1000

Small sample (T ¼ 100)

Low noise (s0 ¼ 0:5) 207 945 998

High noise (s0 ¼ 1) 78 923 999

Table 6

Joint selection frequency in 1000 realizations by AIC

Variables (K) States (N) 1 N0 ¼ 2 3 4 Column sum

1 0 0 0 0 0

2 0 0 0 0 0

K0 ¼ 3 0 481 106 30 617

4 0 66 76 48 190

5 0 34 97 62 193

Row sum 0 581 279 140 1000
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parameters in y. For the sake of illustration, we use the low noise and large sample
setting in Table 2, which is favorable for AIC. Table 6 reveals that AIC selects more
states and variables than in the DGP and that the correct joint selection frequency is
only 48.1%. Thus, by using AIC in practical applications, users stand about equal
chance to retain a correct or an incorrect model; when it is the latter, they would fit
spurious regressions in non-existent states. We next present two empirical examples
to illustrate the usefulness of MSCl¼N in practice.
5. Empirical examples

We first study the business cycle in the US economy and then the effectiveness of
media advertising.
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5.1. US real GNP growth

Hamilton (1989) was first to formulate the Markov-switching autoregression
model to capture business cycles in real GNP. In his formulation, the mean GNP
growth rate switches between two states: recessions and expansions. Hansen (1992)
extends this model to allow both the mean growth rate and the autoregressive
coefficients to switch between states. We study this extended model, which is given
by Eqs. (1) and (3), where xt ¼ ð1; yt�1; yt�2; yt�3; yt�4Þ

0 and yt is quarterly real GNP
growth in chained 1996 dollars. We use seasonally adjusted data that span the period
1947:1–2002:4 (see http://www.bea.doc.gov). We exclude 16 quarterly observations
(1999:1 to 2002:4) from the estimation sample and use these excluded observations to
evaluate one-quarter-ahead forecasts. The estimation sample comprises T ¼ 203
observations because we also exclude 5 observations for computing the growth rate
and the initial lagged values.

We apply the EM algorithm described in Section 2 to these data, and consider
various state-variable combinations (N,K), where N ¼ 1,y, 4 and K ¼ 1,y, 5. We
estimate 20 different N-state Markov-switching autoregression models and compute
the two estimates of KL divergence: AIC and MSCl¼N . Based on the minimum AIC
value, we would select a model with N� ¼ 4 and K� ¼ 5, which is the largest model
in this set of 20 candidate models. This finding is consistent with the simulation
evidence (see Table 6), which reveals AIC’s tendency to select more states and
variables than necessary.

On the other hand, the minimum value of MSCl¼N yields N� ¼ 3 and K� ¼ 1,
indicating the retention of the three-state model with no autoregressive lags (i.e.,
intercepts only). Table 7 reports the parameter estimates for this retained model,
which identifies one recessionary state (i ¼ 1) and two expansionary states (i ¼ 2,3).
The estimated decline in real GNP during recessions is �0.10% per quarter; the
mean growth rates during the two expansion states are 1.50% and 0.85% per
quarter.

In Fig. 2, we present the estimated smoothed probability sequence x̂i ¼

ðx̂1i; . . . ; x̂TiÞ
0
based on (7) and overlay it with the recessionary periods (in gray

bars) noted by the National Bureau of Economic Research. Panel A shows that the
Table 7

Estimated parameters for the three-state model for the US GNP growth

Parameters for each state I State 1 State 2 State 3

Mean growth rate, b̂i
�0.10 (0.29) 1.50 (0.18) 0.85 (0.06)

Noise level, ŝi 0.95 (0.15) 0.91 (0.09) 0.42 (0.04)

Transition probability matrix, P̂

Pr(sti ¼ 1| st�1,1 ¼ 1) 0.78 (0.11) 0.20 (0.10) 0.02 (0.04)

Pr(sti ¼ 1| st�1,2 ¼ 1) 0.12 (0.08) 0.85 (0.08) 0.03 (0.02)

Pr(sti ¼ 1| st�1,3 ¼ 1) 0.04 (0.05) 0.00 (0.07) 0.96 (0.05)

Standard errors (in parentheses) were computed from the outer product of scores.

http://www.bea.doc.gov
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estimated probability of recession reasonably matches the actual recessions. Panels B
and C display the two types of expansions. The first type occurred exclusively before
1984, while the second occurred mostly during the 1980s and the 1990s. Because
ŝ3 ¼ 0:42oŝ2 ¼ 0:91; the recent expansionary state (i ¼ 3) exhibits lower volatility
than the previous one (i ¼ 2). This finding supports the phenomenon of great
moderation—first discovered by Kim and Nelson (1999a) and McConnell and Perez-
Quiros (2000)—which is characterized by a reduction in the variance of economic
growth since 1984.

We compare the forecasting performance of this retained model to that of a
benchmark model that specifies Ln(GNP) as a random walk with constant drift.
Over the period 1999-2002, the mean squared forecast errors are 0.351 and 0.433 for
the retained model and the random walk model, respectively. In addition, the mean
absolute forecast error was 0.539 for the retained model and 0.546 for the random
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walk. The retained three-state Markov-switching model performs well because it
adapts to the recession in 2001, whereas the random walk model does not (see Fig. 2).
5.2. Advertising effectiveness

In marketing, brand managers commonly use the advertising model, yt ¼ bð0Þ þ
bð1Þzt þ bð2Þyt�1 þ �t; to determine the effectiveness of advertising (Bucklin and
Gupta 1999, p. 262), where yt denotes brand sales at time t, zt represents advertising
spending, and et is the normal error term. The coefficient b(1) measures the
effectiveness of current advertising; the coefficient b(2), known as the carryover
effect, captures the cumulative impact of past advertising reflected in the attained
sales yt�1 (see, e.g., Palda, 1964, p. 13). We extend this advertising model by
incorporating regime shifts so that the parameter vector bi ¼ ðb

ð0Þ
i ;b

ð1Þ
i ;b

ð2Þ
i Þ
0
is

specific to each regime i ¼ 1,y,N. This extension marks the first application of
Markov-switching models in the advertising literature (see Feichtinger et al., 1994;
Mantrala, 2002; Naik and Raman, 2003).

We apply this extended model to Lydia Pinkham company’s annual sales and
advertising data from 1914 to 1960 (Palda, 1964). This classic data set exhibits a few
unique features: relatively stable product design during this period; advertising
primarily affects sales, given the absence of channel members or sales force; and the
lack of close competitors. These market conditions comport with the above
advertising model. Furthermore, after the second World War ended, Lydia Pinkham
management demonstrated the product’s efficacy to the Federal Trade Commission
(FTC), which permitted them to make stronger claims in their advertising copy.
Moreover, they switched from pure newspaper advertising to a mix of multiple
media, which comprised newspaper, magazine, radio, and even television. (See
Palda, 1964, pp. 25-26 for details.)

Given these changes in market conditions, we consider the possibility of a distinct
post-war regime(s) by estimating various Markov-switching models with state-
variable combinations (N,K), for N ¼ 1,y,4 and K ¼ 1,y,3. Then we compute AIC
and MSCl¼N for each combination. AIC selects a model with N*

¼ 3 states, which,
given the simulation results in Table 6, is likely to be more than necessary. In
contrast, MSCl¼N retains two states (i.e., N*

¼ 2). The smoothed probabilities x̂1 ¼
ðx̂11; . . . ; x̂T1Þ

0
indicate that the first state persisted from 1914 through 1945, whereas

the second state lasted from 1946 to 1960. This regime switch coincided with the
FTC’s approval of stronger copy and the beginning of multiple media spending.

Table 8 shows the different estimates of advertising effectiveness and carryover
effects for the pre- and post-war regimes. Specifically, advertising is more effective in

the post-war era b̂
ð1Þ

2 ¼ 1:174b̂
ð1Þ

1 ¼ 0:43
� �

due to stronger copy and multiple media.

In addition, the carryover effect is smaller in the post-war era

b̂
ð2Þ

2 ¼ 0:274b̂
ð2Þ

1 ¼ 0:53
� �

; given the shorter duration for the impact of past

advertising to accumulate. Thus, these new findings are not discernible from the
standard regression model of advertising.
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Table 8

Estimated parameters for the two-state model for media advertising

Parameters for each state i State 1 State 2

Advertising effectiveness b̂
ð1Þ

i
0.43 (0.17) 1.17 (0.23)

Carryover effect, b̂
ð2Þ

i
0.53 (0.14) 0.27 (0.09)

Intercept, b̂
ð0Þ

i
1.05 (0.45) 0.26 (0.20)

Noise level, ŝi 0.53 (0.09) 0.10 (0.02)

Transition Probability Matrix, P̂

Pr(sti ¼ 1| st�1,1 ¼ 1) 0.96 (0.04) 0.04 (0.04)

Pr(sti ¼ 1| st�1,2 ¼ 1) 0.06 (0.07) 0.94 (0.07)

Standard errors (in parentheses) were computed from the outer product of scores.

A. Smith et al. / Journal of Econometrics 134 (2006) 553–577 571
6. Concluding remarks

Markov-switching regression models provide an analytical framework to study
both shifts in regimes and the differential impact of explanatory variables
across regimes (or states). In this paper, we investigate the problem of selecting
an appropriate Markov-switching model by applying the principle of
minimum Kullback-Leibler divergence. Specifically, we derive a new Markov-
switching criterion, MSC, to jointly determine the number of states and variables
to retain in the model. We find that MSC performs well not only in regression
and autoregression models, but also in single and multiple states, small and
large samples, and low and high noise. Furthermore, it provides valuable insights
in empirical applications. For example, it identifies three states—one recession
and two expansions—in real GNP data; the second expansion exhibits slower
growth, lower volatility and longer duration than the first one, an insight that is
consistent with the notion of ‘‘great moderation’’ (Kim and Nelson, 1999a;
McConnell and Perez-Quiros, 2000; Stock and Watson, 2003). In the advertising
study, MSC enables brand managers to detect shifts in market conditions and
to estimate advertising and carryover effects specific to every identified market
condition.

We conclude by identifying four avenues for further research. The first one is to
extend MSC to the ‘‘mixed’’ switching regression case, where some coefficients do
not change across states, while the others do. The second is to allow different
explanatory variables in each regime. The third avenue is to incorporate non-
linearity in (2) via the single-index model (e.g., Horowitz, 1998); see Naik and Tsai
(2001) for model selection in the single-state case. Finally, we encourage research to
investigate model selection for periodic regime-switching models (Ghysels et al.,
1998) and state space models with time-varying coefficients (Kim and Nelson, 1999b;
Naik et al., 1998). We believe that such efforts would enhance the usefulness of
Markov-switching regression models.
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Appendix A. Derivation of Markov-switching criterion

Let ŷ ¼ vec b̂; ŝ; P̂
� �

be the MLE of y computed from a realization Y that is
independent of Y*. In addition, let y� ¼ vec b�;s�;P�ð Þ ¼ argminyEY� � log f ðY �; yÞ½ �

and S* denote a realization from a Markov chain of dimension N with transition
probability matrix P*. Then the average KL information loss is

~dKL ¼ � 2EYEY� log f Y �; ŷ
� �� �� �

¼ � 2EYEY� ;S� log f Y �; ŷ
� �� �

¼ � 2EYEY� ;S� log f Y �jS�; b̂; ŝ
� �

þ log f S�; P̂
� �

� log f S�jY �; ŷ
� �� �

¼ � 2EYEY� ;S�
XT

t¼1

XN

i¼1

s�ti log f i y�t ; b̂i; ŝi

� � !

� 2EYEY� ;S�
XT�1
t¼1

XN

i¼1

XN

j¼1

s�tis
�
tþ1;j log p̂ij þ

XN

i¼1

s�1i log p̂i

 !

þ 2EYEY� ;S�
XT�1
t¼1

XN

i¼1

XN

j¼1

s�tis
�
tþ1;j log t̂tij � log x̂ti

� �
þ
XN

i¼1

s�1i log x̂1i

 !

¼ � 2EYEY� ;S�
XT

t¼1

XN

i¼1

s�ti log f i y�t ; b̂i; ŝi

� � !
� 2EYEY� RðN;Y �; ŷÞ

� �
,

ðA:1Þ

where EY�;S� ð�Þ indicates the expectation under the joint density of (Y*,S*), and

R N;Y �; ŷ
� �

�
XT�1
t¼1

XN

i¼1

XN

j¼1

t�tij log p̂ij þ
XN

i¼1

x�1i log p̂i

�
XT�1
t¼1

XN

i¼1

XN

j¼1

t�tij log t̂tij � log x̂ti

� �
�
XN

i¼1

x�1i log x̂1i.

We assume p̂i40 almost surely, i.e., the estimated probability that the process visits
each state is positive. Also, note that all expectations are conditional on
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xt; t ¼ 1; 2; . . . ; T . The first term in (A.1) is

� 2EYEY� ;S�
XT

t¼1

XN

i¼1

s�ti log f i y�t ; b̂i; ŝi

� � !

¼ EYEY�;S�
XT

t¼1

XN

i¼1

s�ti log 2pŝ2i
� �

þ
1

ŝ2i
y�t � x0tb̂i

� �2 ! !

¼ EY

XN

i¼1

T�i log 2pŝ2i
� �

þ
XN

i¼1

1

ŝ2i

XT

t¼1

EY�;S� s�ti y�t � x0tb̂i

� �2� 
 !

¼ EY

XN

i¼1

T�i logð2pŝ
2
i Þ þ

XN

i¼1

1

ŝ2i

XT

t¼1

EY� ;S� s�ti s�i �ti þ x0tb
�s�t � x0tb̂i

� �2� 
 !
,

ðA:2Þ

where T�i � p�i T ; p�i ¼ E s�ti
� 	

is the ith element of the principal eigenvector of
P�p� ¼ p�, and s�i �ti ¼ y�t � x0tb

�
i : Moreover, from Hamilton (1990), we have

EY�;S� s�ti�ti

��xt

� �
¼ EY� x�ti�ti

��xt

� �
¼ 0: Thus, the second term in (A.2) is

EY

XN

i¼1

T�i
ðs�i Þ

2

ŝ2i
þ
XN

i¼1

1

ŝ2i

XT

t¼1

x0tEY�;S� s�ti b�s�t � b̂i

� �
b�s�t � b̂i

� �0� �
xt

 !

¼ EY

XN

i¼1

T�i
ðs�i Þ

2

ŝ2i
þ
XN

i¼1

1

ŝ2i
p�i
XT

t¼1

x0tEY� b�s�t � b̂i

� �
b�s�t � b̂i

� �0���s�ti ¼ 1
� �

xt

 !

¼ EY

XN

i¼1

T�i
ðs�i Þ

2

ŝ2i
þ
XN

i¼1

p�i
b̂i � b�i
� �0

X 0X b̂i � b�i
� �

ŝ2i

0
B@

1
CA. ðA:3Þ

To evaluate (A.3), we first consider b̂i � b�i
� �0

X 0X b̂i � b�i
� �

: Because b̂i ¼

X 0Ŵ iX
� ��1

X 0Ŵ iy ¼ b�i þ X 0Ŵ iX
� ��1

X 0Ŵ i�i; it follows that

b̂i � b�i
� �0

X 0X b̂i � b�i
� �

¼ �0iŴ iX X 0Ŵ iX
� ��1

X 0X X 0Ŵ iX
� ��1

X 0Ŵ i�i

and

EY b̂i � b�i
� �0

X 0X b̂i � b�i
� �� �

¼ tr EY X X 0Ŵ iX
� ��1

X 0X X 0Ŵ iX
� ��1

X 0Ŵ i�i�
0
iŴ i

h i� �
.

Moreover, x̂ti is uncorrelated with xt, and so X 0Ŵ iX
� �

¼
PT

t¼1x̂tixtx
0
t �

p̂i

PT
t¼1xtx

0
t ¼ p̂i X 0Xð Þ; where p̂i � T�1

PT
t¼1x̂ti: Thus,

EY b̂i � b�i
� �0

X 0X b̂i � b�i
� �� �

� tr X X 0Xð Þ
�1

X 0EY p̂�2i Ŵ i�i�
0
iŴ i

� �� �
.

Note that the diagonal and off-diagonals elements of EY p̂�2i Ŵ i�i�0iŴ i

� �
equal

EY �2tix̂
2

tip̂
�2
i

� �
and EY �ti�t�r;ix̂tix̂t�r;ip̂

�2
i

� �
; respectively. Furthermore, p̂i and �ti; x̂ti

� �
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are approximately independent because p̂i is the average of x̂ti over t. Then, using

this information and replacing x̂ti with s�ti; we obtain

EY �2tix̂
2

tip̂
�2
i

� �
� EY �2tix̂

2

ti

� �
EY p̂�2i

� �
� EY �2tis

�
ti

� �
EY p̂�2i

� �
¼ p�i s�i

� �2
EY p̂�2i

� �
,

and

EY �ti�t�r;ix̂tix̂t�r;ip̂
�2
i

� �
� EY �ti�t�r;is

�
tis
�
t�r;i

� �
EY p̂�2i

� �
¼ EY EY �tij�t�r;i; s

�
ti; s
�
t�r;i

� �
�t�r;is

�
tis
�
t�r;i

� �
EY p̂�2i

� �
¼ 0.

Consequently, we have

EY b̂i � b�i
� �0

X 0X b̂i � b�i
� �� �

� p�i s�i
� �2

EY p̂�2i

� �
tr X X 0Xð Þ

�1
X 0

� �
� p�i
� ��1 s�i

� �2liK , ðA:4Þ

where li � p�i
� �2

EY p̂�2i

� �
:

Next, consider ŝ2i in (A.3). Since y� X b̂i ¼ y� X X 0Ŵ iX
� ��1

X 0Ŵ i Xb�i þ �i
� �

¼

I � X X 0Ŵ iX
� ��1

X 0Ŵ i

� �
�i; we have

ŝ2i ¼ T̂
�1

i y� X b̂i

� �0
Ŵ i y� X b̂i

� �
¼ T̂

�1

i �0i I � Ŵ iX X 0Ŵ iX
� ��1

X 0
� �

Ŵ i�i

¼ ðp̂iTÞ
�1�0iŴ i�i � ðp̂iTÞ

�1�0iŴ iX X 0Ŵ iX
� ��1

X 0Ŵ i�i.

Moreover, approximating X 0Ŵ iX
� �

with p̂i X 0Xð Þ as above, we obtain

EY ŝ2i
� �
� T�1EY p̂�1i �0iŴ i�i

� �
� T�1EY p̂�2i �0iŴ iX X 0Xð Þ

�1
X 0Ŵ i�i

� �
¼ EY �2tix̂tip̂

�1
i

� �
� T�1tr X X 0Xð Þ

�1
X 0EY Ŵ i�i�

0
iŴ ip̂�2i

� �� �
� EY �2tix̂tip̂

�1
i

� �
� T�1 p�i

� ��1 s�i
� �2liK .

Because p̂i and �ti; x̂ti

� �
are approximately independent and EY �2tix̂ti

� �
�EY �2tix

�
ti

� �
¼

p�i s�i
� �2

; we have EY �2tix̂tip̂
�1
i

� �
� EY �2tix

�
ti

� �
EY p̂�1i

� �
¼ p�i s�i

� �2
EY p̂�1i

� �
: Conse-

quently,

EY

T�i ŝ
2
i

s�i
� �2

 !
� diT

�
i � liK, (A.5)

where di � p�i EY p̂�1i

� �
:
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Using (A.4) and (A.5) together with the Chi-squared approximation to
T�i ŝ

2
i

.
s�i
� �2

proposed by Cleveland and Devlin (1988), we obtain

EY

s�i
� �2
T�i ŝ

2
i

 !
�

1

diT
�
i � liK � 2

(A.6)

and

EY

b̂i � b�i
� �0

X 0X b̂i � b�i
� �

ŝ2i

0
B@

1
CA ¼ T�i EY

b̂i � b�i
� �0

X 0X b̂i � b�i
� �.

s�i
� �2

T�i ŝ
2
i = s�i
� �2

0
B@

1
CA

�
T�i p�i
� ��1liK

diT
�
i � liK � 2

. ðA:7Þ

Substituting (A.6) and (A.7) into (A.3) in conjunction with (A.2), we find that the
average KL information loss in (A.1) is

~dKL �
XN

i¼1

T�i EY log 2pŝ2i
� �

þ
XN

i¼1

T�i
� �2

diT
�
i � liK � 2

þ
XN

i¼1

T�i liK

diT
�
i � liK � 2

� 2EY EY� R N ;Y �; ŷ
� �� �� �

.

Finally, replacing T�i ; EY log 2pŝ2i
� �

and EY EY� R N;Y �; ŷ
� �� �� �

with their in-
sample estimates, we obtain an estimate of ~dKL :

MSC ¼
XN

i¼1

T̂ i log 2pŝ
2
i þ

XN

i¼1

T̂ i T̂ i þ liK
� �

diT̂ i � liK � 2
� 2R N;Y ; ŷ

� �

¼ � 2 log f Y ; ŷ
� �� �

þ
XN

i¼1

T̂ i T̂ i þ liK
� �

diT̂ i � liK � 2
,

where log f Y ; ŷ
� �

¼ � 1
2

PT
t¼1T̂ i log 2pŝ2i þ 1

� �
þ R N;Y ; ŷ

� �
:
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