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RESIDUAL INFORMATION CRITERION FOR
SINGLE-INDEX MODEL SELECTIONS
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We develop a residual information criterion (RIC) for single-index models using the residual log-likelihood approach.
The proposed criterion selects both the smoothing parameter and explanatory variables. Thus, it is a general selection
criterion that provides a unified approach to model selection across both parametric and nonparametric functions.
Monte Carlo studies demonstrate that RIC performs satisfactorily except when the sample size is small and the
signal-to-noise ratio is weak. An application of RIC is illustrated for marketing a new medical technology.

Keywords: Local polynomial regression; Residual likelihood; Sliced inverse regression; Variable and smoothing
estimator selections

1 INTRODUCTION

In data analysis, linear regression models have been widely used to study the relationship
between the response variable, y, and a vector of explanatory variables, x . In practice, however,
the functional form that links the response variable to the set of explanatory variables may not be
known. In such situations, the single-index model (see Horowitz, 1998) provides an approach
to incorporate unknown, potentially nonlinear, relationship between the response variable and
the index variable x ′β. Specifically, a link function g relates the expected response E(y) to the
index variable x ′β in the single-index model: E(y) = g(x ′β). The linear regression model is
its special case when g is an identity function; nonparametric regression model also is a special
case when x contains one variable with β = 1.

In linear as well as nonparametric regression models, various model selection criteria have
been proposed and studied over the last three decades. In the context of variable selections,
the selection criterion can be either efficient (e.g., Akaike information criterion (AIC), Akaike,
1973) or consistent (Bayesian information criterion (BIC), Schwarz, 1978). There is no general
agreement on whether efficiencyor consistency is preferred (see Burnham andAnderson, 2002,
Ch. 6; McQuarrie and Tsai, 1998, Ch. 2 for detailed discussions). Recently, Naik and Tsai
(2001) extended the applicability of Hurvich and Tsai’s (1989) efficient criterion AICC from
linear regression models to single-index models. However, a consistent criterion for single-
index models is not available. More recently, Shi and Tsai (2002) applied residual likelihood
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approach to obtain a consistent criterion i.e., the residual information criterion (RIC) for linear
regression models. Complementing Naik and Tsai (2001) and extending Shi and Tsai (2002),
we derive RIC for single-index model and investigate its performance. The resulting criterion
simultaneously chooses relevant variables and the smoothing parameter for unknown link
functions.

The rest of this paper is organized as follows. In Section 2, we introduce the residual like-
lihood function and derive RIC for single-index models. Section 3 presents Monte Carlo
results that show RIC performs well in most situations, except when the sample size is
small or the Signal-to-noise ratio (SNR) is weak. In this case, the use of RIC may result
in underfitting. Section 4 applies RIC to test a new concept of medical technology for market
introduction. Finally, in Section 5, we conclude by suggesting possible avenues for further
research.

2 DERIVATION OF RIC

2.1 Model Structures

Consider the collection of candidate models

Y = g(Xβ) + e, (2.1)

where Y = (y1, . . . , yn)
′, X = (x1, . . . , xn)

′ is an n × p matrix of random regressor values, xi

and β are p × 1 vectors, g(Xβ) is an n × 1 vector with ith component g(x ′
iβ) (i = 1, . . . , n),

e for given X = x is distributed as N(0, σ 2 In), and σ is an unknown scalar. Furthermore, we
assume that g is a differentiable function and ‖β‖ = 1 for identification (see Carroll et al.,
1997). The log-likelihood function for model (2.1), omitting irrelevant terms, is

L{(β, σ 2); Y } = −n

2
log(σ 2) − {Y − g(Xβ)}′{Y − g(Xβ)}

2σ 2
. (2.2)

For the given g, the least squares estimator of β, β̂, is a
√

n-consistent estimator.
Thus, g(X β̂) = g(Xβ) + V (β̂ − β) + op(1/

√
n) = g(Xβ) + Hpe + op(1/

√
n), where Hp =

V (V ′V )−1V ′, V = ∂g(Xβ)/∂β = ġ(Xβ)X , and ġ is the derivative of g. Thus, the residual
for the given g is ê = Y − g(X β̂) = (I − Hp)e + op(1/

√
n). We next apply the residual

likelihood approach (Verbyla, 1993), which is the same as the marginal likelihood (McCullagh
and Nelder, 1989, Ch. 7) or the restricted likelihood (Diggle et al., 1994, Ch. 4), to obtain the
residual log-likelihood for candidate models:

L{σ 2; ê} = − (n − p)

2
log(σ 2) − log |V ′V |

2
− e′(I − Hp)e

2σ 2
+ op

(
1

n

)
. (2.3)

If the link function g is an identity function, then ignoring the remainder term from Eq. (2.3)
yields the residual log-likelihood function of the linear regression model given by Verbyla
(1990). To derive RIC, we consider it as the residual log-likelihood function for the single-index
model.

Suppose that data Y are generated from a model, which constitutes the nearest representation
of the true situation.Adopting Linhart and Zucchini’s (1986) terminology,we call such a model
the operating model:

Y = g0(X0β0) + ε,
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where X0 = (x10, . . . , xn0)
′ is an n × p0 matrix of random regressor values, xi0 and β0

are p0 × 1 vectors, g0(X0β0) is an unknown n × 1 vector with ith component
g0(x ′

i0β0) (i = 1, . . . , n), ε for given X0 = x0 is distributed as N(0, σ 2
0 In), and σ0 is an

unknown scalar. In addition, we assume that g0 is a differentiable function and ‖β0‖ = 1
for identification. Then the residual log-likelihood for the operating model is L0{(g0, σ

2
0 ); ε̂},

which has the same form as Eq. (2.3) except that p, g, ê, σ 2, V , and Hp in Eq. (2.3) are replaced
by p0, g0, ε̂, σ 2

0 , V0, and Hp0 = V0(V ′
0V0)

−1V ′
0, respectively, where ε̂ = Y − g0(X0β̂0), β̂0 is

the estimator of β0, and V0 = ∂g0(X0β0)/∂β0. Using the residual log-likelihood function, we
next obtain a new model selection criterion.

2.2 RIC Criterion for Single-Index Models

A useful measure of the discrepancy between the residual log-likelihood functions of candidate
and operating models is the Kullback-Leibler information. Omitting terms that are not functions
of the candidate model (Linhart and Zucchini, 1986), we obtain the twice of the Kullback-
Leibler information metric:

δ = E0[−2L{σ 2; ê}]
= (n − p) log(σ 2) + log |V ′V | + E0

e′(I − Hp)e

σ 2

= (n − p) log(σ 2) + log |V ′V | + (n − p)
σ 2

0

σ 2

+ {g0(X0β0) − g(Xβ)}′(I − Hp)
g0(X0β0) − g(Xβ)

σ 2
, (2.4)

where E0 denotes the expectation under the operating model.
To assess the quality of the above Kullback-Leibler information in the light of data, we need

to find parameter estimators of (β, g, σ 2). For the unknown g, Billinger (1983) showed that
the ordinary least squares (OLS) estimator is a

√
n-consistent estimator of β up to a constant

of proportionality. Later, Duan and Li (1991) developed the sliced inverse regression (SIR)
estimator, and showed that the SIR estimator is

√
n-consistent estimator and it usually has a

smaller variance than the OLS estimator. In addition, it is easy to compute because it does
not require iterative computation even though the link function g is not known. Hence, in
this paper, we apply SIR rather than OLS. (For other estimators of single-index models, see
Horowitz, 1998, Carroll et al., 1997, and Hristache et al., 2001.) Based on the SIR β̂, we first
construct the index t = X β̂, and then apply nonparametric regression smoother to estimate
g(t) (see Fan and Gijbels, 1996; Simonoff, 1996). Finally, the estimator of σ 2 is the residual
sum of squares divided by the degrees of freedom.

Replacing (β, g, σ 2) in Eq. (2.4) with (β̂, ĝ, σ̂ 2), respectively, we obtain

δ̂ = (n − p) log(σ̂ 2) + log |V̂ ′V̂ | + (n − p)
σ 2

0

σ̂ 2

+ {g0(X0β0) − ĝ(X β̂)}′(I − Ĥp)
g0(X0β0) − ĝ(X β̂)

σ̂ 2
,

where V̂ is V evaluated at β = β̂ and g = ĝ, Ĥp = V̂ (V̂ ′V̂ )−1V̂ ′, σ̂ 2 = {Y − ĝ(X β̂)}′{Y −
ĝ(X β̂)}/(n − m̂), m̂ = tr{(I − Ĥp)(I − Ĥnp)}, and ĤnpY = ĝ(X β̂). To assess the quality of
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a candidate model with respect to data, we compute the expectation of δ̂:

� = E0{δ̂}
= E0{(n − p) log(σ̂ 2)} + E0(log |V̂ ′V̂ |) + (n − p)σ 2

0 E0

(
1

σ̂ 2

)

+ E0

[
{g0(X0β0) − ĝ(X β̂)}′(I − Ĥp)

g0(X0β0) − ĝ(X β̂)

σ̂ 2

]
. (2.5)

Given the collection of competing candidate models, we can then select the model that results
in the smallest �.

In order to compute �, we adapt Naik and Tsai’s (2001) four assumptions which are: (1) the
parametric component of a candidate model includes the parametric component of the operating
model; that is the columns of X can be rearranged so that X0β0 = Xβ∗, where β∗ = (β ′

0, β
′
1)

′,
and β1 is a (p − p0) × 1 vector of zeros; (2) there exists a smoother matrix H̃np so that
g̃(Xβ∗) = H̃npY . That is, g̃ is the projection of Y through the hat matrix H̃np; (3) E0{g̃(Xβ∗)} =
g0(Xβ∗); (4) ĝ(X β̂) − g̃(Xβ∗) = Ṽ (β̂ − β∗) + op(1/

√
n) = H̃p(Y − g̃(Xβ∗)) + op(1/

√
n),

where H̃p = Ṽ (Ṽ ′Ṽ )−1Ṽ ′, Ṽ = ∂ g̃(Xβ)/∂β|β=β∗ = g̃.(Xβ∗)X , and g̃. is the derivative of g̃.
The first assumptions was made in the derivation of AIC for parametric model (see Akaike,
1973; Linhart and Zucchini, 1986, p. 245). The second and the third assumptions indicate that
the estimator is a linear function of Y and an unbiased estimator, respectively. Assumption 2
is often considered in the context of nonparametric regressions. Assumption 3 was made by
Cleveland and Delvin (1988) even though it may not hold in practice. Assumption 4 implies
that the estimator of the link function can be replaced by its first order Taylor approximation.
As in Hurvich et al. (1998) and Naik and Tsai (2001), the above assumptions are made only
to facilitate the derivation of a selection criterion whose performance is satisfactory in finite
samples (see Section 3).

Under Assumptions (1)–(4), we have g0(Xβ∗) − g̃(Xβ∗) = −H̃npε and g̃(Xβ∗) −
ĝ(X β̂) ≈ −H̃p{ε + g0(Xβ∗) − g̃(Xβ∗)} = −(H̃p − H̃p H̃np)ε. Hence, g0(Xβ∗) − ĝ(X β̂) ≈
−(H̃p + H̃np − H̃p H̃np)ε, and Y − ĝ(X β̂) ≈ (I − H̃p − H̃np + H̃p H̃np)ε. Furthermore, we
approximate Ĥp and Ĥnp with H̃p and H̃np, respectively. Then, � in Eq. (2.5) can be
approximated by

�̃ = E0{(n − p) log(σ̂ 2)} + E0(log |V̂ ′V̂ |)

+ (n − p)m̃σ 2
0 E0

{
1

ε′(I − H̃p − H̃np + H̃p H̃np)′(I − H̃p − H̃np + H̃p H̃np)ε

}

+ m̃ E0

{
ε′(H̃p + H̃np H̃p H̃np)

′(I − H̃p)(H̃p + H̃np − H̃p H̃np)ε

ε′(I − H̃p − H̃np + H̃p H̃np)′(I − H̃p − H̃np + H̃p H̃np)ε

}
,

where m̃ = tr{(I − H̃p)(I − H̃np)}. Approximating log |V̂ ′V̂ | with p log(n), and upon alge-
braic simplification, we get

�̃ ≈ E0{(n − p) log(σ̂ 2)} + p log(n) + (n − p)m̃σ 2
0 E0

{
1

ε′(I − H̃np)′(I − H̃p)(I − H̃np)ε

}

+ m̃ E0

{
ε′ H̃ ′

np(I − H̃p)H̃npε

ε′(I − H̃np)′(I − H̃p)(I − H̃np)ε

}
. (2.6)
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Next, applying the method proposed by Cleveland and Delvin’s (1988) and Hastie and
Tibshirani (1990), the distributions of ε′(I − H̃np)

′(I − H̃p)(I − H̃np)ε and {ε′ H̃ ′
np(I −

H̃p)H̃npε}/{ε′(I − H̃np)
′(I − H̃p)(I − H̃np)ε} can be approximated by (δ2/δ1)χ

2
δ2

1/δ2
and

(ν1/δ1)Fν2
1 /ν2,δ2

1/δ2
, respectively, where δ1 = tr{(I − H̃np)

′(I − H̃p)(I − H̃np)}, δ2 = tr[{(I −
H̃np)

′(I − H̃p)(I − H̃np)}2], ν1 = tr{H̃ ′
np(I − H̃p)H̃np} and ν2 = tr[{H̃ ′

np(I − H̃p)H̃np}2].
Hence,

E0

{
1

ε′(I − H̃np)′(I − H̃p)(I − H̃np)ε

}
≈

(
δ1

δ2

) (
δ2

1

δ2
− 2

)
,

and

E0

{
ε′ H̃ ′

np(I − H̃p)H̃npε

ε′(I − H̃np)′(I − H̃p)(I − H̃np)ε

}
≈

{
ν1(δ1/δ2)

(δ2
1/δ2 − 2)

}
.

Substituting the above expressions in Eq. (2.6), we propose an estimator of �:

RIC∗ = (n − p) log(σ̂ 2) + p log(n) + m̂

{
(δ̂1/δ̂2)(n − p + ν̂1)

δ̂2
1/δ̂2 − 2

}
,

where m̂, δ̂1, δ̂2 and ν̂1 are m̃, δ1, δ2 and ν1 evaluated at β = β̂ and g = ĝ. We further simplify
RIC∗ so that it is easy to compute. Specifically, we adapt Hurvich et al.’s (1998) approach
to approximate δ̂2 by δ̂1, and then replace δ̂1 and ν̂1 by m̂ and tr{(I − Ĥp)Ĥnp}, respectively.
Consequently, we obtain the RIC:

RIC = (n − p) log(σ̂ 2) + p log(n) + m̂[tr{(I − Ĥp)Ĥnp} + (n − p)]

m̂ − 2
. (2.7)

The accuracy of approximation of RIC to RIC∗ was examined in Monte Carlo simulations (not
reported here), and was found to be excellent.

The RIC criterion unifies model selection across both parametric and nonparametric func-
tions. For example, in parametric regression models, H̃np = 0 and tr(H̃p) = p. Hence, after
subtracting the constant n + 2, Eq. (2.7) results in

RIC = (n − p) log(σ̂ 2) + p log(n) − p + 4

(n − p − 2)
,

which is the RIC of Shi and Tsai (2002).

3 SIMULATIONS

In this section, we use Monte Carlo simulations to investigate the performance of RIC as a
function of sample size, SNR, and shape of the link function. For the sake of brevity, we
report the results for the following settings even though we conducted extensive simulation
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TABLE I Frequency of Number of Variables Selected by RIC in 1000 Repetitions for the Operating
Model exp(−X ′

0β0) with p0 = 5.

Variables, p

n SNR 1 2 3 4 5 6 7 8 9 10

30 3 226 58 45 86 379 65 30 24 14 73
5 109 24 23 74 652 67 23 9 8 11
8 33 12 14 39 827 44 18 4 3 6

50 3 136 38 34 76 548 76 24 13 17 38
5 28 13 16 46 803 48 23 14 6 3
8 6 6 5 19 888 56 11 5 3 1

studies. Here, we consider the sample sizes n = 30 and 50. True link functions are g0(X0β0) =
exp(−X0β0) and sin(X0β0), where β0 = (1/

√
55)(1, 2, 3, 4, 5)′, X0 is an n × 5 matrix, and

the i th row of X0, (xi1, . . . , xi5), contains five independent standard normal random variables.
The explanatory variables of the candidate single-index models are stored in the n × 10 matrix
X containing independent standard normal random variables in a nested fashion. In other
words, columns 1 to p, p = 1, . . . , 10, define the matrix of explanatory variables for the
candidate single-index model with p regressors. The true single-index model contains the
explanatory variables corresponding to the first five columns of X . We take ε ∼ N(0, σ 2

0 ),
and SNR = Ry/σ

2
0 = 3, 5 and 8, where Ry is the range of g0(X0β0). We perform 1000

replications for each of the settings described above. In each realization, we apply sliced
inverse regression (SIR) and local polynomial regression to estimate β and g, respectively.

Table I presents the frequency of model selection by RIC when the true link function is
exp(−X0β0) which exhibits a decreasing trend. When the SNR is weak (SNR = 3), the correct
model is not easily discernible, and RIC tends to underfit severely. This phenomenon holds
even when n = 50, albeit not so severely. As SNR gets larger, the model estimation improves,
and so the extent of underfitting decreases. In addition, RICs large penalty function prevents
overfitting, especially when the SNR increases. This finding can be seen more clearly in Table II
where the true link function is a non-monotonic function, sin(X0β0). Indeed, RIC performs
quite well when SNR = 8. In conclusion, the performance of RIC improves as the sample size
increases or the SNR gets strong. A similar finding has been noticed in linear regression model
selection (see Shi and Tsai, 2002).

In addition to variable selections, we compute the average of the normed SIR estimates β̂SIR

and their standard deviations. We find that β̂SIR provides a good estimate of β. As n or SNR
increases, both the accuracy and precision of β̂SIR increase. Since this finding is consistent
with Naik and Tsai (2001), we do not present our results here. Instead, we compute the average

TABLE II Frequency of Number ofVariables Selected by RIC in 1000 Repetitions for the Operating Model sin(X ′
0 β0)

with p0 = 5.

Variables, p

n SNR 1 2 3 4 5 6 7 8 9 10

30 3 349 35 39 64 497 15 0 0 1 0
5 96 7 3 22 869 3 0 0 0 0
8 22 3 0 8 960 6 1 0 0 0

50 3 94 8 9 31 842 15 0 1 0 0
5 5 0 0 0 991 3 1 0 0 0
8 1 0 0 0 996 3 0 0 0 0
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TABLE III Bandwidth Estimates When the Correct Model is Chosen.

exp(−X ′
0β0) sin(X ′

0β0)

SNR 3 5 8 3 5 8

n = 30 1.715 1.107 0.654 1.776 1.268 0.854
n = 50 1.552 0.865 0.452 1.405 0.763 0.443

TABLE IV The Average ASE in 1000 Repetitions.

exp(−X ′
0β0) sin(X ′

0β0)

SNR 3 5 8 3 5 8

n = 30 3.281 1.966 1.343 0.098 0.053 0.030
n = 50 2.687 1.765 1.143 0.065 0.030 0.017

smoothing parameter estimate ĥ when the correct model is chosen. Table III shows that ĥ
becomes larger when n or SNR gets smaller. Thus, RIC tends to oversmooth as sample size or
SNR decreases.

To further illustrate the performance of RIC on the smoothing parameter selection, we use
the same simulation settings given above except that we only consider the candidate model with
p = 5. Let hRIC be the smoothing parameter chosen by RIC, and the average squared errors
(ASE),ASE = ∑n

i=1{ĝhRIC(x ′
i β̂SIR) − g0(x ′

iβ0)}2/n. Table IV shows that theASE decreases as
the SNR or the sample size increases. This implies that the performance of RIC in smoothing
parameter selection improves as n or SNR gets large. Thus, RIC can be used to select both the
smoothing parameter and relevant regressors when the sample size is large and/or the signal
is strong.

4 EMPIRICAL EXAMPLE

We illustrate the application of RIC to test a new concept of medical technology for market
introduction. A professional market research company conducted ‘concept tests’ to gauge
whether the market would adopt a new medical technology. This market research study enables
the company to determine the important attributes of the new technology (see Dolan, 1993,
p. 83 for details). In this proprietary study, 46 respondents indicated their purchase intention
on a 5-point scale, where 5 represents ‘very likely to adopt’, and 1 denotes ‘not at all likely.’
Using 10-point scales, where 10 indicates ‘strongly agree’ and 1 means ‘strongly disagree,’ the
respondents stated their extent of agreement on the importance of nineteen attributes of the
new concept for medical technology.

The goal of concept testing is to determine which key attributes drive respondents’purchase
intention. To this end, typically, linear regression is applied to concept-test data, where purchase
intention serves as the dependent variable and the set of attributes constitutes the independent
variables. When we apply linear regression to the above proprietary data, we find that adjusted
R2 is 8.95%, and that only one of the 19 attributes (namely, micronised particles) is significant
using the t-test at the 5% significance level. When we apply SIR to estimate the single-index
model, purchase intention = g(set of 19 attributes), we do not pre-specify functional forms
for g(·), thus relaxing the linearity assumption inherent in linear regression models. Using
Chen and Li’s (1998) t-test, we then discover two more important attributes (namely, very
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large molecules, and variation of biologicals) in addition to the micronised particles. Thus,
SIR detects the effects of key attributes that the linear regression could not; this is because SIR
estimator is more efficient than the OLS (Duan and Li, 1991).

When we apply the RIC criterion for this single-index model, we attain the minimum RIC
value of 86.47, the bandwidth is 1.4, and the resulting adjusted R2 equals 29.07%. More
importantly, we find that the retained set of important variables includes two more attributes
(namely, nano-particles and early drug development) in addition to the above three attributes.
In other words, RIC retains 5 variables as the key attributes to predict purchase intention.
Thus, by augmenting the set of important variables, RIC not only assists the new product team
to identify specific attributes that drive purchase intention, but also prevents the premature
elimination of important attributes that would otherwise result from the use of t-tests for linear
or inverse regressions.

5 CONCLUSION

In this paper, we applied residual log-likelihood approach to obtain the selection criterion
RIC for jointly selecting nonparametric smoothing parameter and relevant variables in single-
index models. We can extend this approach to three research areas. The first is to derive RIC for
partially linear single-index models (Carroll et al., 1997) and multiple-index models (Ichimura
and Lee, 1991). The second is to obtain RIC for single-index models with general covariances
that include the weighted or autocorrelated structures. The third is to study the efficacy of RIC
with alternative parametric parameter estimators, e.g., the OLS estimator, Brillinger (1983), the
weighted average derivative estimator, Powell et al. (1989), and the maximum quasi-likelihood
estimator, Carroll et al. (1997) as well as nonparametric smoothing parameter estimators (e.g.,
cubic spline smooth estimator, quadratic local polynomial estimator, and kernel estimator).
We believe that such efforts would yield better methods for nonparametric and semiparametric
data analysis.
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