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significant measurement noise in both retail audit and company's internal data to track brand
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for amajor hair care brand. Next, we analytically derive the optimalweights to combine noisy and
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independent noisy metrics are better than one even when the second metric is noisier. In other
words, a composite metric serves as noise reduction device as it is more reliable than individual
noisymetrics. Subsequently,wederive closed-formexpressions for the optimal budget and its op-
timal allocation to advertising and promotions activities in the presence of unreliable sales met-
rics. Based on these results, we discover that marketing overspending increase as metrics
unreliability increases. Furthermore, overconfidence —the presumption that the metrics are reli-
able— leads to overspending on advertising and promotions. Managers should reduce advertising
and promotional spending when sales metrics are noisy. Finally, we provide a simple correction
factor that managers can use to eliminate overspending.
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1. Introduction

Virtually all metrics unreliably reflect their unobservable constructs, perhaps with the exception of time measured by atomic
clocks or calendar weeks. In sciences, for example, metrics such as moisture, texture and pH measure the underlying “soil condi-
tions” (Grace & Bollen, 2008). In economics, metrics like consumer confidence or gross domestic product reflect the state of an
economy; or consumption and expenditure surveys help gauge poverty (e.g., Beegle, Weerdt, Friedman, & Gibson, 2010). In mar-
keting, metrics such as sales, market share, cash flow, operating earnings, stock returns indicate a firm's value (e.g., Srinivasan &
Hanssens, 2009). In branding, companies strive to win customers' hearts and minds and so they monitor mind-set metrics
(e.g., awareness, liking, consideration, intention) to infer how customers think, feel and act (Bruce, Peters, & Naik, 2012;
Pauwels, Erguncu, & Yildirim, 2013; Srinivasan, Vanhuele, & Pauwels, 2010). In advertising, eye-tracking data permits inference
on viewers' angle of gaze, attention, information acquisition, and memory for brands (e.g., Wedel & Pieters, 2008). In sales, surveys
of physicians indicate the information content used during sales call for detailing prescription drugs (Kappe & Stremerch, 2016). In
retailing, consumer offtakes and competitors' brand sales are measured by using diary panels, scanner panels, or store audits to
estimate marketing effectiveness (e.g., Nielsen, IRI, GfK).

Such metrics of awareness (Millward Brown), consumer confidence (Conference Board), customer satisfaction (ACSI), sales
calls on physicians (IMS Health, Cegedim), consumption and expenditures (Bureau of Labor Statistics) are based on surveys,
which are likely to be error-prone. Consumer offtakes measured by auditing stores are also contaminated by measurement errors,
which we describe in detail in Section 4.1. Even bar code scanning for accurately tracking items sold at the stock-keeping unit
(SKU) level when aggregated over dozens of SKU items in each store and hundreds of such stores dispersed geographically to ob-
tain national brand sales yields various “estimates,” depending on how SKUs are combined (e.g., weighted by volume, prices, or
market shares).

Measurement errors manifest themselves in business-to-business (B2B) contexts as well. Companies report that 25% of B2B da-
tabases are inaccurate and 60% of them judged overall data quality as unreliable.1 Hanssens (1998) states that accurate demand
data are typically hard to come by, as most industries lack consolidated scanning services and instant demand feedback that are
typical of the packaged goods sectors in advanced economies.

It is well known that the presence of measurement errors leads to adverse statistical consequences. For example, measure-
ment errors render parameter estimates inconsistent and introduce attenuation bias (e.g., see Naik & Tsai, 2000). However,mar-
keting consequences due to the presence of measurement errors are not known. Specifically, how does measurement noise
impact optimal marketing budgeting, its optimal allocation to advertising and promotions, and marketing overspending? To
this end, this paper develops a method to reduce measurement noise and discovers how metrics unreliability drives marketing
overspending.

We begin by formulating a measurement model that incorporates bias and noise in each of the multiple metrics. Then,
we derive the optimal weights to combine multiple metrics to infer the latent demand consistently. Next, we design a
Kalman filter that controls for measurement errors, estimates the time-varying effectiveness of advertising and promotions,
and quantifies the synergies between advertising and distribution as well as between promotions and distribution. We il-
lustrate the application of the proposed method to a major hair care brand in India. Empirical results furnish evidence that
measurement noise and bias in both the metrics and in each of the six regions are statistically significant at the 95% con-
fidence level. Subsequently, we derive closed-form expressions for optimal advertising spending and optimal timing of pro-
motions. We deduce new propositions that elucidate how metrics unreliability impacts the optimal budget and allocation
as well as marketing overspending. Specifically, marketing overspending increases as metrics unreliability increases. This
finding not only underscores the importance of metrics unreliability, but also incentivizes managers to reduce measure-
ment noise. We also learn that overconfidence —the presumption that the metrics are reliable when they are not— drives
overspending on advertising and promotions. This impact is asymmetric, with more overspending on advertising than on
promotions. Finally, we derive a “correction factor” which offers a constructive approach for managers to eliminate
overspending.

In sum, this paper is the first one to make the following original contributions. First, methodologically, we derive the optimal
combination of unreliable metrics and incorporate it in the proposed estimation method. Second, empirically, we establish that
metrics are indeed noisy and quantify the magnitude and heterogeneity across six markets in India. Third, theoretically, we discov-
er how low versus high noise levels affect marketing overspending and its asymmetric effect on advertising and promotional
overspending.

The rest of the paper is organized as follows. We first review the extant literature to establish gaps. We then
formulate the measurement model to derive the optimal metrics combination to reduce noise. We then describe the
data, estimation, and results. Subsequently, we derive new propositions on the effects of measurement noise on the optimal
marketing budget, optimal allocation, and marketing overspending. We close by discussing the implications for managers
and researchers.
1 http://www.funnelholic.com/2013/09/16/the-problem-of-dirty-data-and-why-every-sales-and-marketing-leader-should-care/.
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2. Literature review

2.1. Previous marketing-mix models using noisy sales data

We reviewed the marketing literature and found 166 studies using noisy sales metrics in marketing mix models. Of which, 89
studies included advertising effects (54%), 67 price effects (40%), 52 promotion effects (31%), and 19 distribution effects (11%). The
sum exceeds 100% because multiple activities appear in some studies. We found various metrics for the dependent variable such
as cross-sectional usage surveys of consumers, longitudinal consumer diary panel, shipments data from manufacturer, warehouse
withdrawal (SAMI), and retail audit of order quantity and consumer offtakes. Assael (1967, p. 401) shows that consumer panel,
retail audits, and telephonic survey are each individually unreliable (also see Wind & Lerner, 1979). Kuehn, McGuire, and Weiss
(1966) conjectured that if noisy retail audit data are used to measure consumer demand, parameter estimates are possibly biased.
But they did not estimate the magnitude of bias, which Shoemaker and Pringle (1980, p. 91) quantify and conclude that,
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Moreover, they find that parameter estimates obtained from each metric differ significantly. So they formally test the hypoth-
esis of equality of the corresponding parameters and conclusively reject it for all the six brands they analyzed except one. Thus
they conclude that the various metrics “… give different indications of the use of marketing decision variables.”

More importantly, none of the studies in Table 1 combined multiple metrics. When multiple noisy metrics are available, their
weighted combination facilitates the reduction in variance. To understand this phenomenon, consider a simple example of two in-
dependent normal variables Xj~N(μj,σ2), j=1 and 2. Although the variance of each variable equals σ2, the variance of the com-
bined variable 0.5X1+0.5X2 is σ2/2, which is half as much as any one of them. This principle of variance reduction forms the
basis for diversification of risky assets in portfolio management (Markowitz, 1952) or combination of forecasts in econometrics
(Bates & Granger, 1969) or creation of antithetic variables in Monte Carlo studies (Morgan, 2005). In other words, we gain efficien-
cy by combining multiple unreliable metrics. Hence, we formally derive the optimal weights to combine multiple metrics. Next, we
briefly review the statistics literature on errors-in-variables.

2.2. Errors-in-variables literature

Given the adverse consequences of ignoring measurement errors (e.g., inconsistency, attenuation bias), a vast literature exists
on the topic of errors-in-variables, and hence we review a few key studies. Adcock (1877, 1878) first posed the problem of errors
in independent variables and proposed the method of orthogonal regression that minimizes orthogonally projected distance from
data points to the regression line (instead of the vertical distances as in the standard regression). Pearson (1901) extended this
idea to multiple independent variables. Lindley (1947) pioneered the use of maximum likelihood estimation for the errors-in-
variables model. To tackle errors in both the independent and dependent variables, Jöreskog (1970) proposed the confirmatory
factor analysis, where measurement equations incorporate the errors in both kinds of variables and the structural equations specify
the relations among the latent factors. This approach is commonly used in marketing (e.g., see Grewal, Cote, & Baumgartner, 2004,
Ramani & Kumar, 2008, Steenkamp & de Jong, 2010).

Despite the century of research on this topic, the abovemodels do not apply to time series datawith inter-temporal dependence in
variables. Notable exceptions include Cai, Naik, and Tsai (2000), who proposed the denoised least squares estimator, where each
noisy metric is individually de-noised by applying an appropriate wavelet transform before fitting the resulting denoised variables
via time seriesmodels (see Naik & Tsai, 2000 for amarketing application). To jointly filter noise frommultiple noisymetrics observed
over time, Bruce et al. (2012) specify dynamic factor models, where multiple metrics reflect the latent factors that evolve over time.
Dynamic factor models are special cases of the general state space models and the Kalman filter (see Harvey, 1994).

2.3. Implications for model development

Based on the above review, we identify the gaps in the extant literature. First, the sales metrics such as retail offtakes and sec-
ondary sales contain measurement noise, which induces biases in the estimated parameters. Second, the extant marketing models
based on noisy sales metrics observed over time have not used errors-in-variables formulation to filter noise when estimating pa-
rameters. Third, the extant marketing models have not optimally combined the sales metrics to gain efficiency in parameter esti-
mation. Last but not least, the extant literature does not present the derivation of the optimal budget and its allocation to
advertising and promotions in the presence of unreliable metrics.

To fill these gaps, we next formulate the errors-in-variable model to control for measurement noise, optimally combine the
multiple metrics to infer the latent demand, and formally derive the optimal advertising spending and promotion timing in the
presence of unreliable metrics.

3. Model development

We first formulate a new marketing model that addresses the two challenges: controlling metrics unreliability and combining
information from multiple metrics. Then we describe parameter estimation and robust inference.

3.1. Controlling metrics unreliability

We use errors-in-variables framework to model unreliable metrics, which accounts for measurement noise and bias in each
metric. Let Y1t and Y2t denote the observed retail offtakes and secondary sales at time t, and εjt (j=1,2) be the measurement er-
rors in each metric. Because both metrics reflect the common demand, St, we model the errors in the metrics as follows:
Y1t
Y2t

� �
¼ π1St

π2St

� �
þ ε1t

ε2t

� �
; ð1Þ
where πj measures the bias (in retail offtakes or secondary sales). The error vector εt=(ε1t,ε2t)′ follows the bivariate normal with
zero means and the error variances σj

2 (j = 1, 2) are arranged diagonally in a matrix R. Eq. (1) thus formally incorporates mea-
surement errors in both the metrics, whose presence can be ascertained by testing for statistical significance of the variances.

Marketing activities such as advertising and promotions drive the latent demand. Previous research (e.g., Hanssens, Parsons, &
Schultz, 2001; Leone, 1995) shows that the carryover effect λ from the lagged demand drives the inter-temporal influence of
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marketing actions (e.g., the carryover effects from past advertising or promotions). Eq. (2) captures the effects of current market-
ing activities and the carryover effects from past marketing activities as follows:
St ¼ λSt−1 þ β1t
ffiffiffiffiffi
ut

p þ β2tvt þ ηt ; ð2Þ
where St is the latent consumer demand, λ is the carryover effect, (β1t,β2t) are time-varying effectiveness of advertising and pro-
motions, (ut,vt) are advertising spending and a promotions “on-off” indicator, respectively, and ηt denotes the normal errors in de-
mand specification. The square root function captures the diminishing returns to advertising (see Simon & Arndt, 1980), which
means the incremental sales from additional advertising diminish as spending levels increase.

The effectiveness of advertising and promotions are usually assumed to be constant over time. We relax this assumption for two
reasons. First, constant effectivenessmodels imply constant optimal spending over time (see Naik & Raman, 2003). But actual spend-
ing varies over time, contradicting this predicted pattern. Hence, we relax the assumption by making the effectiveness parameters
vary over time (e.g., Ataman, VanHeerde, &Mela, 2010). Because the exact nature of time variation is not known, recent studies spec-
ify random walk evolution (e.g., Kolsarici & Vakratsas, 2010), which parsimoniously captures non-monotonic dynamics.

Second,marketing in onemediummay enhance the effectiveness ofmarketing in anothermedium. Consumers often see a brand's
campaign in one medium, but forget the exact nature of the marketing efforts. When they see it again in a different medium, it rein-
forces their memory and they recall the campaign in the first medium. Thus, themarketing response in onemedium enhances due to
the presence of the second medium. Such reinforcement induces synergies between media (e.g., Naik & Raman, 2003; Narayanan,
Desiraju, & Chintagunta, 2004). To capture such synergies between advertising and distribution as well as promotions and distribu-
tion, we extend the randomwalkmodel by including a non-zero drift to get βi ,t+1=βi ,t+γizt+ηit, where zt denotes the distribution
intensity. In other words, if a brand is more widely available, then its advertising and promotions are likely to be more effective.

We extend Eq. (2) by incorporating both the extensions as follows:
St
β1;tþ1
β2;tþ1

24 35 ¼
λ

ffiffiffiffiffi
ut

p
vt

0 1 0
0 0 1

24 35 St−1
β1;t
β2;t

24 35þ
0

γ1zt
γ2zt

24 35þ
η1t
η2t
η3t

24 35; ð3Þ
where the error vector ηt=(η1t,η2t,η3t)′ follows the trivariate normal N(0,Q) with zero means and the covariance matrix Q. The
variance captures the unexplained portion of the variation in the true demand St.

Eq. (3) represents the transition equation in the state space framework (see Harvey, 1994), where αt=(St,β1,t+1,β2,t+1)′ is
the state vector, dt=(0,γ1zt,γ2zt)′ is the drift vector, and the matrix in Eq. (3) is called the transition matrix Tt. We link the
state vector to the unreliable metrics Yt=(Y1t,Y2t)′ in Eq. (1) via the observation equation:
Y1t
Y2t

� �
¼ π1 0 0

π2 0 0

� � St
β1;tþ1
β2;tþ1

24 35þ ε1t
ε2t

� �
; ð4Þ
where we denote the link matrix in the above equation by H. The above discussion completes the model specification, which can
be expressed compactly in the state-space form: Yt=Hαt+εt (Eq. (4)) and αt=Ttαt−1+dt+ηt (Eq. (3)).

3.2. Combining multiple metrics optimally

The two metrics do not match exactly over time; that is, Y1t≠ Y2t for various t. One way to combine the multiple metrics is to
update the states proportional to the forecasting errors as follows:
α̂t ¼ α̂tjt−1 þ Kt Yt−Ŷ t

� �
; ð5Þ
where α̂tjt−1 ¼ E½αt jIt−1�, bYt ¼ E½Yt jIt−1�, It−1 ¼ fY1;⋯;Yt−1g denotes the information set at time (t−1), and Kt is a 3 × 2 time-
varying matrix to be determined. The elements {k11,t,k12,t} in the matrix Kt are the weights placed on the forecasting errors to ob-
tain Ŝt :Similarly, using the other elements in second and third rows of the matrix Kt, Eq. (5) updates the estimates of advertising
and promotions effectiveness.

We seek the optimal weighting matrix Kt
∗ such that the estimates α̂t are as close as possible to their true values αt on average.

Formally stated, let ωt ¼ αt−α̂t , so that the mean squared error is given by.
Jt ¼ E St−Ŝt
� �2 þ β1;tþ1−β̂1;tþ1

� �2 þ β2;tþ1−β̂2;tþ1

� �2� �
¼ E ω

0

tωt

h i
¼ E Tr ω

0

tωt

� �h i
¼ Tr E ωtω

0
t

� �	 
 ¼ Tr Ptð Þ; ð6Þ
where the third equality follows by noting ωt′ωt is a scalar; and the fourth one interchanges the trace and expectation operators
and sums the diagonal of the matrix Pt. Next, we prove in Appendix A that.
Pt ¼ I−KtHð ÞPtjt−1 I−KtHð Þ0 þ KtRK
0
t ; ð7Þ
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where Ptjt−1 ¼ Var½αt jIt−1�. Finally, to bring the estimates closest to the true values, we choose the matrix Kt that minimizes Eq.
(6). Recalling that ∂Tr(ABA′)=2AB∂A for symmetric B, we obtain the first-order condition:
∂ Jt
∂Kt

¼ 2 I−KtHð ÞPtjt−1 −Hð Þ0 þ 2KtR: ð8Þ
By setting ∂ Jt/∂Kt= 0, we determine the optimal weighting matrix as follows:
I−K�
t H

	 

Ptjt−1H

0 ¼ K�
t R

Ptjt−1H
0 ¼ K�

t HPtjt−1H
0 þ R

� �
K�
t ¼ Ptjt−1H

0
HPtjt−1H

0 þ R
� �−1

ð9Þ
The last equality in Eq. (9) provides the optimal weights to combine the multiple metrics Yt in Eq. (5). Appendix B derives the
closed-form expressions given in

Proposition 1. The optimal combination of the unreliable metrics Y1 and Y2 is given by Ŝ ¼ k�1Y1 þ k�2Y2, where k�1 ¼ π1ϕ1
1þπ2

1ϕ1þπ2
2ϕ2

and

k�2 ¼ π2ϕ2
1þπ2

1ϕ1þπ2
2ϕ2

are the optimal weights, ϕ1 ¼ σ2
S

σ2
1
and ϕ2 ¼ σ2

S
σ2

2
are the signal-to-noise ratios of the two metrics, and σS

2 denotes the

mean squared error of latent demand.

Proof. See Appendix B.

Before we discuss insights from this proposition, we note that the optimal weights vary over time because the gain matrix Kt
∗ in

(9) is time varying, although we suppressed the time subscript here, but incorporate it in the next section on parameter estima-
tion. Also, Ŝ is not an unbiased estimator of S as it exhibits “shrinkage” akin to Bayesian estimators, which balance the bias-
variance tradeoff to increase efficiency by tolerating bias. An unbiased estimator necessarily sacrifices precision. Finally, we define
the terms we use interchangeably, although they have distinct meanings. Specifically, for each metric j, measurement error refers
to ϵj; measurement noise means σj

2; signal-to-noise ratio is ϕj=σS
2/σj

2; and metric unreliability is noise-to-signal ratio, ϕ−1
j ¼ σ2

j

σ2
S
.

Four original insights emerge from the above proposition. First, the optimal weights depend on the two aspects of unreliability:
signal-to-noise ratios ϕjand biases πj. As the signal-to-noise ratio for the metric improves, its weight increases in informing the true
consumer demand. Furthermore, when πj equals unity so that the relative bias disappears, the weights become symmetric func-
tions of signal-to-noise ratios (i.e., k�j ¼ ϕ j

1þϕ1þϕ2
).

Second, the derivation of optimal weights does not require the assumption that the measurement errors are normally distributed. In
otherwords, theweights given in Proposition 1 are optimal across any distribution ofmeasurement errorswith finite first twomoments.

Third, a composite metric serves as noise reduction device as it is more reliable than independent noisy metrics. Researchers and
managers can improve reliability by using multiple noisy metrics. Most researchers do not combine multiple noisy metrics (see
Table 1). For example, Bass et al. (2007, p. 184) had data on two metrics of demand —minutes of call time and number of
calls— but they did not combine them because the optimal weights were not known, as Proposition 1 was not available then.

Lastly, even the inclusion of weak metrics improves reliability. To understand this point, suppose a team of researchers has one
reasonable metric and then they find another independent one that is twice as noisy. Should they combine the two metrics or
just use the precise one? In other words, does the inclusion of a weak metric dilute the mix? Given that the weak metric is
twice as noisy as the precise one, let's consider a convex combination in 2:1 proportion. Then, the variance of the composite met-
ric is given by Varð23 Y1 þ 1

3Y2Þ ¼ 4
9σ

2 þ 1
9 ð2σ2Þ ¼ 2

3σ
2, which is smaller than the noise σ2 in the more precise metric. In other

words, an additional noisier metric injects new information, thus serving as a noise reduction device. Hence the composite metric
becomes more reliable by inclusion of an independent noisier metric.

3.3. Parameter estimation and robust inference

To assessmarketing effectiveness in the presence of unreliable salesmetrics, we apply Eqs. (5) and (9) startingwith the initial values
α0 and model parameters (λ ,γi ,π ,Q ,R), whose values managers don't know when the models or markets are new. Hence we describe
how to estimate parameters via the maximum-likelihood theory. Specifically, we first compute the log-likelihood function,
LL θð Þ ¼ ΣT
t¼1Ln p Yt jℑt−1ð Þ½ �; ð10Þ
where p(∙| ∙) denotes the conditional density of Yt based on themetrics observed up to the previous period, It−1 ¼ fY1;⋯; Yt−1g. Then,
using Eq. (4), we find the conditional mean Ŷ t ¼ E½Yt j It−1� ¼ Hatjt−1; so the innovation errors ðYt−Ŷ tÞ are distributed with zero
mean and the covariance matrix Ft=HPt∣t−1H′+R, where (α̂tjt−1; Ptjt−1Þ are the conditional means and covariances of the “prior”
state vector αt j It−1 . We obtain its moments via Eqs. (3) and (4). Specifically, α̂tjt−1 ¼ Ttα̂t−1 þ dt and Pt ∣t−1=TtPt−1Tt′+Q,
where (α̂t−1; Pt−1Þ are the conditional means and covariances of the “posterior” state vector αt−1 j It−1. After the new data arrives,
that is, It ¼ Yt It−1, we update the prior moments via Eqs. (5), (7), and (9). Then, ignoring the irrelevant constants, we recursively
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build the log-likelihood function,
LL θð Þ ¼ −0:5ΣT
t¼1½Ln det Ftð ÞÞ þ Yt−Ŷ t

� �0

F−1
t Yt−Ŷ t

� �� �
; ð11Þ
where det(·) denotes the determinant. For further details, see Appendix B in Naik, Mantrala, and Sawyer (1998).
Next, to estimate the parameter vector θ=(λ′,γ′,π′,diag(Q),diag(R))′ with p elements (as necessary for multiple regions), we

maximize Eq. (11) to obtain,
θ̂ ¼ ArgMax LL θð Þ: ð12Þ
Finally, to obtain the standard errors of θ̂, we take the square root of the diagonal of the inverse of the matrix:
Ĉ ¼ −
∂2LL θð Þ
∂θ∂θ0

�����
θ¼θ̂

; ð13Þ
where the Hessian of LL(θ) is evaluated at the estimated values θ̂.
To make inferences robust to mis-specification errors (e.g., the functional relation specified between marketing spends and

sales outcomes differ from the actual market reality), we compute the sandwich estimator (White, 1982):
~C ¼ Ĉ
−1

V̂ Ĉ
−1

; ð14Þ
where V is a p×p matrix of the gradients of the log-likelihood function; that is, V=G′G and G is T×p matrix obtained by stacking
the 1×p vector of the gradient of LL(θ) for each of the T observations. In correctly specified models, C=V and so both the Eqs. (13)
and (14) yield exactly the same standard errors (as they should); otherwise, we use the robust standard errors given by the
square root of the diagonal elements of C�, which safeguards researchers from general mis-specification errors. The next section
describes the data and the retail store auditing process that creates metrics unreliability, and then presents the estimation results.

4. Empirical analysis

4.1. Data

We analyze the marketing activities of a major brand of hair care in India. Due to nondisclosure agreements, we cannot divulge
the brand's identity and the proprietary data. But the brand is well known and generates several million US dollars in annual rev-
enues. It is distributed widely across urban, semi-urban, and rural regions. Over 130 million consumers are reached through its
distribution network of over 3 million outlets in India. Given the vast coverage of the brand to retailers that lack bar code tech-
nology to track sales, the firm employs A. C. Nielsen Inc. to conduct field audits of a small sample of selected stores.

Nielsen's retail sales audit methodology entails two main activities: (a) shop census and sample determination every three
years, and (b) shop audits and sales projection on a monthly basis. We next describe this process in detail. Activity (a) begins
by creating 19 Nielsen regions from thirty five political states of India. These regions come from the four zones: North (Delhi, Pun-
jab, Haryana, Rajasthan, Uttar Pradesh, Uttaranchal), West (Gujarat, Maharashtra/Goa, Madhya Pradesh, Chhattisgarh), South
(Andhra Pradesh, Karnataka, Kerala, Tamil Nadu/Pondicherry), and East (Bihar, Jharkhand, West Bengal, Orissa, Assam & N.E).
Across these 19 regions, the first stage sampling draws 462 urban towns and 1427 rural villages, which represent 8.9% and
0.24% of towns and villages, respectively. In each sampled town or village, stores dealing in products of interest are classified ac-
cording to their type (Grocer, General Store, Chemist, Paan-Plus, Food Store, Cosmetic Store, Others) and an assigned score called
dealer class value. Using weights in the parentheses, the dealer class value of a store is computed depending on its monthly turn-
over (52%), the number of fast moving consumer products it stocks (28%), the number of salespersons it employs (11%), and the
number of cooling devices it contains (9%). Then, based on these two dimensions (store types by dealer class value), the second
stage sampling selects 10,653 stores in urban towns and 5593 stores in rural villages, which totals to 16,246 stores nationwide.
Even though most towns with population over a million and over one-half of all the districts in each region are included, this
panel of shops represents a meager 0.21% of the retail universe of 7.87 million stores.

Activity (b) involves sending field agents to inspect the panel of shops between 12th and 28th of every month. They record the
monthly inventory (validated by taking pictures) and new purchases (allegedly verified by billing information) across various
product-packs from 112 product categories. Using this data, Nielsen computes the monthly retail offtakes based on the equation:
retail offtakes equals opening inventory plus new purchases minus closing inventory. Based on the census data, they finally project
the offtakes from the panel stores to the Nielsen regions and national levels, and report it within 45 days to the companies sub-
scribing these services.

We spoke with several industry leaders about the unreliability of Nielsen's retail offtakes metric. Mr. M. G. Parameswaran, CEO
of Draft FCB Ulka, summarizes the situation: “The challenge is not just in the small sample sizes but the inter-city, inter-region
variations. In every product category there are regional variations. Often this is not captured accurately by the audits.” Besides
the small sample of the retail panel and the non-representativeness of inter-region and inter-city variations across product
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categories, many other errors creep in because of the manual nature of the field work, multiple purchases after the auditors' visits,
untracked inventory in offsite locations and home attics, unbilled new purchases to avoid taxes and to under-report revenues, lack
of representation of modern trade, slow updates of shop census and stores' panel relative to changing market conditions, among
others.

The resulting problem of measurement noise in retail offtakes is so severe that major companies such as Unilever, Godrej, and
Dabur went public with their dissatisfaction, according to Balakrishnan (2011), who writes in Economic Times that Unilever con-
sidered dropping Nielsen's services and Mr. Paul Polman, the global CEO of Unilever, expressed reservations about the accuracy
of the reported offtakes. To remedy the situation, Mr. Piyush Mathur, CEO of Nielsen India, admits that the retail audit is a “con-
stant work-in-progress” and proposes to expand the panel from 16,246 to 24,000 stores. Nonetheless, Mr. Dalip Sehgal, Managing
Director of Godrej Consumers Products, says that “Nielsen would have us believe that increasing the sample would resolve issues.
But past records tell a different story. Samples were increased in 2006, and yet, reliability of data is no better, and in some cases,
even worse” (Balakrishnan, 2011 in Economic Times).

Despite this unreliability, large consumer product companies subscribe to Nielsen's data. What justifies their decisions to con-
tinue the subscriptions to Nielsen's unreliable data? Proposition 1 does. Albeit unreliable, Neilsen's retail offtakes provides some
corroboration and new information —akin to a “second opinion”— to aid their understanding based on internal secondary sales
data, which is not a perfect metric either. As noted in the main implication of Proposition 1, the reliability of the composite metric
improves when two noisy metrics from independent sources are used rather than just one, even if the second metric is substan-
tially biased and noisy.

4.2. Variables

The two sales metrics are retail offtakes (i.e., quantity sold to consumers) and the company's secondary sales (i.e., quantity sold
to retailers). The brand is available in three pack sizes (100 ml, 200 ml, 500 ml) in multiple flavors with a total of 18 stock-keeping
units, and so we analyze the total volume in kiloliters. Advertising and promotions vary over time, while prices remained nearly
constant over time and identical across regions (and hence cannot be included in the model). Advertising data include the total
GRPs in national and cable television, and promotion data indicates the timing of promotions. We augment this information
with distribution intensity over time, i.e. the percentage of retailers who carried the brand. Accordingly, we can test whether dis-
tribution creates synergies with advertising and promotions. In other words, in the presence of synergy, advertising (or promo-
tion) effectiveness should be enhanced due to wider brand availability: the greater the penetration, the more effective the
advertising (or promotions). We present results from the largest six political regions, covering over 80% of the total sales, spanning
the breadth of the country: Andhra Pradesh, Gujarat, Karnataka, Maharashtra, Tamil Nadu, and Uttar Pradesh. All data are observed
over 33 months starting from April 2008 to December 2010. Fig. 1 provides a plot of the two sales metrics in each region, and
Table 2 presents the descriptive statistics.

For each region, we estimate the proposed model in Eqs. (3) and (4) by applying the estimation approach described in
Section 3.3. In addition, we account for potential endogeneity in advertising and promotions by using an instrumental variables
approach (e.g., Aravindakshan, Peters, & Naik, 2012, Bronnenberg & Mahajan, 2001). We predict each region's advertising spending
using spending in all other regions, and use this predicted spending as the regressor for advertising. Similarly, we predict each re-
gion's promotional timing using the seasonality index from other political regions and other products in the category, and use this
predicted promotional timing as the regressor for promotions. We next describe the empirical results.

4.2.1. Fit and forecasts
Table 3 shows the fit and forecast for all six regions. As Table 3 shows, the model fits the data from all six regions satisfactorily.

For example, in Maharashtra, the fit for retail offtakes (MAPE = 10.33%) is better than that for secondary sales (MAPE =
16.02%). Similarly, the out-of-sample forecasts are satisfactory. Specifically, we estimate the model using 28 observations
and evaluate the forecast errors based on the last 5 observations in the holdout sample. For example, in Tamil Nadu, the
out-of-sample for secondary sales (MAPE = 11.81%) is better than that for retail offtakes (MAPE = 14.56%). We next de-
scribe the parameter estimates.

4.3. Unreliability estimates

We focus on the estimates of measurement noise and relative bias. Table 4 presents the parameter estimates and robust t-
values for all the six regions. First, the measurement noise in retail offtakes is large and significant in all the six regions (Andhra
Pradesh: σ1=11.97,t=4.91, Gujarat: σ1=8.14,t=8.72, Karnataka: σ1=11.72, t=6.29, Maharashtra: σ1=18.41,t=13.48, Tamil
Nadu: σ1=6.23,t=7.86, Uttar Pradesh: σ1=7.05,t=4.70).

Second, the measurement noise in secondary sales also is large and significant in all six regions (Andhra Pradesh: σ2=
27.60, t=6.99, Gujarat: σ2=22.46, t=6.12, Karnataka: σ2=17.05, t=5.74, Maharashtra: σ2=67.64, t=5.85, Tamil Nadu: σ2=
5.14,t=5.57, Uttar Pradesh: σ2=5.21,t=2.56). Thus, systematically across all regions, these results furnish strong empirical ev-
idence for metrics unreliability.

Third, the bias in both the metrics is large and significant in all the six regions (see estimates and t-values of ðπ̂1; π̂2Þ in
Table 4). Ignoring this presence of unreliability renders all parameter estimates inconsistent (Naik & Tsai, 2000). In other words,



Fig. 1. Retail offtakes and secondary sales across regions.
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managers will estimate parameters of marketing models inaccurately even if the sample size were asymptotically large. In con-
trast, the proposed approach circumvents this problem by filtering out the measurement noise via Eq. (1).
4.4. Carryover and synergy effects

The consumer demand exhibits strong carryover effects in all the six regions —it is large and significant with the median value
of 0.91 and ranges from 0.87 to 0.94.



Table 2
Descriptive statistics.

Andhra Pradesh Gujarat Karnataka Maharashtra Tamil Nadu Uttar Pradesh

Retail offtakes (average), (kilo-liters) 128.86 50.70 74.24 169.74 31.93 27.48
Retail offtakes (standard deviation) 19.52 9.34 13.46 20.20 5.58 7.70
Secondary sales (average), (kilo-liters) 137.25 68.43 80.94 284.29 29.77 29.81
Secondary sales (standard deviation) 31.14 24.99 19.91 84.84 6.67 7.64
Advertising GRPs (average) 290.73 1571.98 252.35 325.27 1740.38 1281.39
Advertising GRPs (standard deviation) 290.42 1476.83 249.72 224.80 1642.92 1169.81
% Promotion on-off (average) 21.2 21.2 21.2 21.2 21.2 21.2
% Promotion on-off (standard deviation) 41.5 41.5 41.5 41.5 41.5 41.5
% Retailers carrying brand (average) 61.2 27.82 49.6 64.7 33.32 47.62
% Retailers carrying brand (standard deviation) 1.23 1.35 2.00 2.16 2.28 3.36
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How does distribution impact the effectiveness of advertising and promotions? Hanssens (1998) says that, “Distribution would
ideally be measured by number or percentage of retail outlets carrying the product, … but such data are not available.” Fortunate-
ly, we do measure the number of retail stores carrying the firm's brand. Then, we find that advertising effectiveness significantly
increases with brand availability in Andhra Pradesh (γ1=0.06),Karnataka (γ1=0.03), and Maharashtra (γ1=0.001). We also fur-
nish empirical evidence for synergy between distribution and promotions. Specifically, promotional effectiveness increases as the
distribution intensity increases in Gujarat (γ2=3.61), Karnataka (γ2=3.95), Maharashtra (γ2=0.35), Tamil Nadu (γ2=4.81),and
Uttar Pradesh (γ2=3.35). These results, new to the literature, empirically ground our understanding of the distribution-driven
synergistic effects.

4.5. Marketing elasticities

To compare the effects of advertising and promotions, we compute their elasticity, which is a dimensionless quantity and hence
comparable across variables with different measurement units. Recall that elasticity means 1% change in advertising (or promo-
tions) results in ω (or υ) percentage change in consumer demand. Denoting (zi;ui; SiÞ as the mean values of distribution, adver-
tising and consumer demand, respectively, we derive from Eq. (3) the advertising elasticity ωi ¼ ð0:5γi1zj

ffiffiffiffi
ui

p
Þ=Si and the

promotions elasticity υi ¼ ðγi2ziÞ=Si for the region i.
Table 5 presents advertising and promotions elasticities. Across the six regions, the median advertising elasticity is 0.0503,

which means the latent market demand increases by about 5% if advertising doubles. This estimate is smaller than the average
ad elasticity of 0.10 (i.e., the demand increases by 10% if advertising doubles) in meta-analysis by Sethuraman, Tellis, and
Briesch (2011). Three factors explain our lower ad elasticity. Our setting represents a non-durable good (hair care oil), in a mature
product lifecycle stage, with moderate advertising support. Sethuraman et al. (2011) show that ad elasticity tends to be higher
(1) for durable goods than nondurable goods, (2) in the early stage than the mature stage, and (3) when products are heavily ad-
vertised. Thus, the smaller ad elasticity corresponds with the opposite market characteristics.

The modal promotions elasticity in Table 5 is 0.233, which means 10% increase in the frequency of promotions yields 2.33% in-
crease in consumer demand. Note that managers did not change the promotions depth over time or regions. Our modal promo-
tions elasticity is much larger than 0.12 to 0.14 reported in previous studies (e.g., Kremer, Bijmolt, Leeflang, & Wieringa, 2008,
Mela, Jedidi, & Bowman, 1998). Our setting represents a product in a mature product lifecycle stage, with moderate promotional
support. Kremer et al. (2008) show that promotional elasticity tends to be higher in the early stage than the mature stage and in
regions where products are heavily advertised. More importantly, the participating company suggests the following explanation.
When they offer non-price retail promotions, consumers engage in stockpiling and purchase acceleration, which increases sales
in that month but reduces it in the future months. This non-responsiveness to purchasing in the post-promotion period —“lie in
wait” behavior documented by Mela et al. (1998)— in turn suppresses ad elasticity because advertising continues all year
round. Hence, even non-price promotions hurt advertising efforts to build brands.

Across regions, advertising works (while promotions do not) in Andhra Pradesh, promotions work (and not advertising) in Gu-
jarat, Tamil Nadu and Uttar Pradesh, and both work only in Karnataka and Maharashtra. In general, advertising and promotions
seemingly counteract each other, inducing a negative correlation of −0.8 between ad and promotions elasticities across regions.
One explanation is that most consumers in small markets (Gujarat, Tamil Nadu and Uttar Pradesh) buy unbranded commodity
Table 3
Fit and forecast.

Andhra Pradesh Gujarat Karnataka Maharashtra Tamil Nadu Uttar Pradesh

Retail offtake fit (MAPEa) 5.92 16.94 15.68 10.33 16.91 18.31
Retail offtake forecast (MAPE) 9.41 18.59 13.50 9.37 14.56 21.87
Secondary sales fit (MAPE) 15.68 24.39 11.76 16.02 15.27 15.76
Secondary sales forecast (MAPE) 19.83 22.50 16.81 24.04 11.81 17.97

a MAPE stands for mean absolute prediction error.



Table 4
Estimation results.

Andhra Pradesh Gujarat Karnataka Maharashtra Tamil Nadu Uttar Pradesh

Parameters Estimate t-Value Estimate t-Value Estimate t-Value Estimate t-Value Estimate t-Value Estimate t-Value

Retail offtakes noise, σ1 11.97a 4.91 8.14 8.72 11.72 6.29 18.41 13.48 6.23 7.86 7.05 4.70
Secondary sales noise, σ2 27.60 6.99 22.46 6.12 17.05 5.74 67.64 5.85 5.14 5.57 5.21 2.56
Bias, π1 0.11 7.29 0.20 7.79 0.10 4.83 2.58 10.09 0.02 5.22 0.12 5.15
Bias, π2 0.12 6.51 0.27 6.18 0.11 4.57 4.38 10.52 0.02 4.68 0.13 5.46
Carryover effect, λ 0.94 67.51 0.93 28.62 0.91 25.50 0.88 18.54 0.90 27.49 0.87 19.89
Synergy between distribution &
advertising, γ1

0.06 8.82 0.00 0.88 0.03 2.44 0.001 4.90 0.00 0.03 0.001 0.28

Synergy between distribution &
promotion, γ2

2.11 1.77 3.61 5.09 3.95 2.77 0.35 3.68 4.81 6.89 3.35 8.15

a Bold estimates are statistically significant at the 95% confidence level.
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hair oil and they respond to brand's promotions. In contrast, consumers in large markets (Maharashtra, Andhra Pradesh and Kar-
nataka) are familiar with the firm's branded hair oil and they respond to the brand's advertising.

Finally, by comparing spending from Table 2 and elasticities from Table 5, we gain insights into the company's allocation be-
havior. For example, advertising elasticities are negligible in Gujarat, Tamil Nadu and Uttar Pradesh, yet the company advertises
heavily in Gujarat, Tamil Nadu and Uttar Pradesh. In other words, the company advertises in Gujarat, Tamil Nadu and Uttar
Pradesh more than the amount they would spend based on either ad elasticity or proportionality to sales arguments. Similarly,
the company advertises in Maharashtra, Andhra Pradesh, and Karnataka less than the amount they would spend based on either
ad elasticity or sales proportionality. As for promotions, the company promotes equally frequently in all six regions, even though
promotion elasticities vary from 0.036 to 0.259 across regions.

To understand this peculiarity, we note that Gujarat, Tamil Nadu and Uttar Pradesh are relatively small markets with an aver-
age volume (across all three regions) of 36.7 and 42.7 kl in offtakes and secondary sales, respectively, whereas Andhra Pradesh,
Karnataka, Maharashtra are about five times larger with an average volume (across all three regions) of 124.3 and 167.5 kl in
offtakes and secondary sales, respectively. In these small markets, advertising-to-sales ranges between 22.9 and 58.5 GRPs/kl; in
the large markets, it ranges between 1.9 and 3.4 GRPs/kl. That is, despite ad elasticities being low, advertising intensity in small
markets is about 15 times higher than that in the large markets. In contrast, promotional elasticity is larger in small markets
than in the large markets. Our discussion reveals that brand managers hope that this disproportionate ad spending helps
(1) grow the small markets and (2) steer consumers away from promotions by emphasizing the product benefits and branding.
They do recognize the need for improving profitability by using models and data and have actively sought our guidance on the
optimal budget and allocations in the presence of unreliable metrics, which we next discuss.

5. Optimal marketing mix using unreliable metrics

Given the unreliability of sales metrics, how should brand managers determine optimal advertising spending and promotional
timing? How should they alter the total budget as unreliability increases? To answer such substantive issues, we formulate and
solve a manager's decision-making problem taking into account the measurement noise and relative bias in the metrics.

5.1. Budgeting and allocation problem

Suppose the manager decides to spend on advertising and promotions over time as follows: {ut,vt :t∈(1,2,…)}. This marketing
plan generates a sales sequence S(t), which is measured using two noisy metrics Y1(t) and Y2(t). A forward-looking manager's
problem is to determine the optimal advertising strategy and promotional timing sequence so as to maximize the net present
value of the stream of profits:
Table 5
Elasticit

Adver
Prom
Π u tð Þ; v tð Þð Þ ¼
Z ∞

0
e−ρt mS tð Þ−u tð Þ−c tð Þv tð Þ½ �dt; ð15Þ
where ρ denotes the discount rate, m is the price-cost margin per unit sold, c(t) is the cost of promotion at time t. The max-
imization of Eq. (15) is subject to the continuous-time version of Eq. (2) given by dS=dt ¼ β1ðtÞ

ffiffiffiffiffiffiffiffiffi
uðtÞp þ β2ðtÞvðtÞ−δS, where δ=

1−λ.
y estimates.

Andhra Pradesh Gujarat Karnataka Maharashtra Tamil Nadu Uttar Pradesh

tising elasticity 0.254 0.001 0.105 0.016 0.001 0.001
otion elasticity 0.209 0.162 0.317 0.036 0.259 0.257
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Since S(t) is not directly observed and rather it is measured via two noisy and biased metrics, we apply Ito's lemma to obtain
the stochastic evolution of the observed metrics. Applying Ito's lemma to the first row of Eq. (1), we observe that dY1=
π1dS+σ1dW1, where W1(t) is the standard Wiener process. Then, substituting π1S(t)=Y1(t)−ε1(t) in the sales dynamics, we
get π1dS ¼ ½π1β1ðtÞ

ffiffiffiffiffiffiffiffiffi
uðtÞp þ π1β2ðtÞvðtÞ−δðY1ðtÞ−ε1ðtÞÞ�dt = ½π1β1ðtÞ

ffiffiffiffiffiffiffiffiffi
uðtÞp þ π1β2ðtÞvðtÞ−δY1�dt þ δσ1dW1: Next, by substitut-

ing this expression for π1dS in dY1=π1dS+σ1dW1, we get Eq. (16), which represents the sales dynamics in the observed metric
Y1. Similarly, we derive the Eq. (17).
dY1 ¼ π1β1 tð Þ
ffiffiffiffiffiffiffiffiffi
u tð Þ

p
þ π1β2 tð Þv tð Þ−δY1

� �
dt þ σ1 1þ δð ÞdW1 ð16Þ
dY2 ¼ π2β1 tð Þ
ffiffiffiffiffiffiffiffiffi
u tð Þ

p
þ π2β2 tð Þv tð Þ−δY2

� �
dt þ σ2 1þ δð ÞdW2 ð17Þ
Thus, the measurement noise induces a stochastic control problem.
To solve this stochastic control problem, we apply the Hamilton-Jacobi-Bellman principle, which leads to a partial differential

equation for the value function V(Y1,Y2). The resulting problem is complicated because, mathematically, the optimal solution to-
be-derived has to take into account four trade-offs: the present versus future (captured through the discount rate ρ), the differen-
tial effectiveness of advertising and promotions (captured through β1(t) and β2(t)), the relative bias in the two metrics (captured
through π), and the effects of unequal signal-to-noise ratios (captured through σ1 and σ2).

The goal is to derive the optimal advertising spending u∗(t)∈(0,∞) which informs how much to spend each week, and the op-
timal promotions indicator v∗(t)∈{0,1}, which informs whether or not to spend on promotions given the time-varying promotion-
al cost c(t). Consequently, the control domains are mixed: continuous-valued control for advertising and binary switch for
promotional timing.

5.2. Optimal advertising and promotions in the presence of unreliable metrics

Taking into account the aforementioned four tradeoffs, we solve the stochastic control problem analytically. We relegate its
proof to Appendix C and present here the final results. Let u0∗(t) and v0

∗(t) denote the optimal advertising and optimal promotions,
respectively, in the presence of perfectly reliable metrics (i.e., with no noise or bias). Then the optimal advertising and promotions
in the presence of unreliable metrics are given by

Proposition 2. u�ðtÞ ¼ u�
0ðtÞ � ð π2

1ϕ1þπ2
2ϕ2

1þπ2
1ϕ1þπ2

2ϕ2
Þ
2
and v�ðtÞ ¼ 1; if v�0ðtÞ �

π2
1ϕ1þπ2

2ϕ2

1þπ2
1ϕ1þπ2

2ϕ2
NcðtÞ

0; otherwise

(

Proof. See Appendix C.

We refer to the expression π2
1ϕ1þπ2

2ϕ2

1þπ2
1ϕ1þπ2

2ϕ2
as the correction factor (CF). It differs from the optimal weights derived in Proposition 1

and depends on the bias and metrics unreliability in a non-trivial manner. More importantly, it moderates the optimal advertising
and promotions decisions under perfect reliability. To compute the correction factor, managers should apply the estimation ap-
proach in Section 3.3 to their market data, and use the estimated parameters to compute the impact and consequences of unre-
liability in their decision-making.

Proposition 2 fully characterizes the optimal total budget and its optimal split between advertising and promotions over time.
Based on Eq. (15), we find that the total budget at any time equals BðtÞ⏟

Total Budget
¼ uðtÞ⏟

Advertising Budget
þ cðtÞvðtÞ:⏟

Promotions Budget
Hence, the optimal total

budget equals B∗(t)=u∗(t)+c(t)×v∗(t). Consequently, the optimal allocation ratios for advertising and promotional spending, re-
spectively, are as follows:
Λ1 tð Þ ¼ u� tð Þ
B� tð Þ ð18Þ
Λ2 tð Þ ¼ c tð Þv� tð Þ
B� tð Þ ð19Þ

where (u∗(t),v∗(t)) comes from Proposition 2.

By further analyzing the correction factor, we gain the following two insights.

Proposition 3. As unreliability increases, first, marketing spending should be reduced. Second, this reduction is more severe for adver-
tising than for promotions.

Proof. CF π2
1ϕ1þπ2

2ϕ2

1þπ2
1ϕ1þπ2

2ϕ2
b 1. So ∂u�t

∂ϕi
N0; and ∂v�t

∂ϕi
N0; i∈ð1;2Þ: As measurement noise increases, the signal-to-noise ratio ϕi decreases and

hence the optimal advertising and promotions decrease.
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An insight emerging from Proposition 3 is the following. In the absence of the proposed estimation method to quantify mea-
surement noises and in the absence of the formula for the correction factor derived in Proposition 2, brand managers have no re-
course but to ignore the measurement noise. Consequently, they would act as if the metrics are perfect (i.e., noise free), which
would lead to overspending on advertising and promotions as implied by Proposition 3. In other words, it pays to quantify the
measurement noise, estimate signal-to-noise ratios, and then adjust the spending levels as per the correction factor. Overconfidence
in data quality is hazardous to profitability.

Another insight emerging from Proposition 3 is the interaction effect. Specifically, it follows from Proposition 2 that the optimal
advertising is proportional to the square of the correction factor, whereas the optimal promotion is linear in the correction factor.
Because the correction factor is less than unity (see the proof of Proposition 3), as measurement noise increases, the reduction in
advertising is faster than that required for promotions, thereby inducing the interaction effect. Consequently, unreliability asym-
metrically alters the optimal advertising and promotions decisions.

We close this section with a graphical illustration of the above results on marketing overspending. To this end, let π1=π2=1,
ϕ1=ϕ2=ϕ=σS

2/σ2. Then we vary the signal-to-noise ratio ϕ from 1 to 10. Because metrics unreliability is the reciprocal of signal-
to-noise ratio, it varies from 0.1 to 1. We compute percentage ad overspending as 100×(u0−u∗)/u∗ and percentage promotional
overspending 100×(v0−v∗)/v∗ using Proposition 2. Fig. 2 displays how percentage overspending increases as metrics unreliability
increases. This effect is asymmetric: advertising overspending increases at a faster rate than promotional overspending.

6. Discussion

6.1. Incorporating unreliable marketing mix metrics

We elucidate here how the proposed framework can incorporate multiple noisy marketing-mix variables. Let Xa and Xp denote
the noisy metrics for advertising and promotional efforts, while and At and pt correspond to their true unobserved values. Applying
the errors-in-variable framework, we express Xat=At+ϵ3t and Xpt=pt+ϵ4t. Then we use these equations to augment the obser-
vation and transition equations. Specifically, the augmented observation equation to filter out the measurement noise is given
by
Y1t
Y2t
Xat
Xpt

2664
3775 ¼

π1 0 0 0 0
π2 0 0 0 0
0 1 0 0 0
0 0 1 0 0

2664
3775

St
At
pt
β1t
β2t

266664
377775þ

ϵ1t
ϵ2t
ϵ3t
ϵ4t

2664
3775: ð20Þ
The corresponding transition equation is given by
Stþ1
Atþ1
ptþ1
β1;tþ1
β2;tþ1

266664
377775 ¼

λ β1t β2t 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

266664
377775

St
At
pt
β1t
β2t

266664
377775þ

0
0
0

γ1zt
γ2zt

266664
377775þ

η1t
η2t
η3t
η4t
η5t

266664
377775: ð21Þ
Fig. 2. Metrics unreliability and marketing overspending.
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Eqs. (20) and (21) filter out the noise simultaneously from multiple inputs and multiple outputs, thus illustrating the flexibility
of the proposed approach. The resulting more general dynamic system can be estimated via the extended Kalman filter (for details,
see Naik, Prasad, & Sethi, 2008).

6.2. Implications for researchers

The adverse consequences of measurement noise raise serious implications. It injects inconsistency in parameter estimation – that
is, nomatter how large the available sample sizes is, the estimated parameterswill not converge to the true parameter values (e.g., Naik
& Tsai, 2000). So what should researchers do? First and foremost, they should acknowledge the possibility that metrics can be unreli-
able, unless proven otherwise (e.g., the estimated noise level is statistically insignificant), rather than ex ante (a) presuppose that “ex-
cellent data is available inmy industry.” Such empirically untested beliefs breed overconfidence— it does not reduceunreliabilitywhen
present. Second, heed to the advice of Morrison and Silva-Risso (1995, p. G61): “…they [researchers] should explicitly consider their
data as coming from themodel: Observed Value= True Score+ Error.” Thirdly, use themethods to filter out the noise so as to restore
consistency. Section 3 offers such a method to estimate dynamic models using multiple noisy and biased metrics.

How should researchers reduce unreliability in their specific applications? Currently, researchers do not combine multiple met-
rics even when data are available (see the last column in Table 1). More recently, Bass et al. (2007) had data on two metrics of
demand (see p. 184) —minutes of call time and number of calls— but they ignored the second metric. Because a composite metric
can reduce noise, we recommend using multiple independent items rather than single items. Extensive simulation studies by
Diamantopoulos, Sarstedt, Fuchs, Wilczynski, and Kaiser (2012) corroborate this recommendation, and they conclude that “…
opting for SI [single-item] measures in most empirical settings is a risky decision as the set of circumstances that would favor
their use is unlikely to be frequently encountered in practice.” Even noisier independent metrics add value; for details, see the
last paragraph in Section 3.2. So don't rely solely on the usual metric if one more is available. For more details on when to use
single- versus multi-item scales, we ask readers to follow the general guidelines in Diamantopoulos et al. (2012).

Another consideration is whether the importance of metrics combination wanes with technological progress? The answer is,
No. To see this point, consider for illustration two independent noisy metrics Y1~N(μ,σ2) and Y2~N(μ,σ2). A composite metric
Y ¼ 1

2Y1 þ 1
2 Y2 has VarðYÞ ¼ 1

4σ
2 þ 1

4σ
2 ¼ 0:5σ2, which is half the noise level than that in the original metrics. Now imagine that

technological progress makes Y1 half as noisy; that is, Y1~N(μ,σ2/2). Then the composite metric, with weights proportional to
precision (namely 2:1), Y ¼ 2

3 Y1 þ 1
3 Y2, has variance equal to 4

9 ðσ2=2Þ þ 1
9σ

2 ¼ σ2=3, which is less than the variance of the “tech-
nologically improved”metric Y1 (namely σ2/2). This example holds more generally with noise levels reduced by any factor k (in-
stead of k=2 in this example), revealing that technological improvements help, yet metrics combination itself serves as the
noise reduction device. The main point of this illustration is: there exists some composite metric that is more precise than the
individual metrics alone. In Proposition 1, we discover the optimal weights to construct that “some” composite metric, which
depends on the extent of bias and noise in the metrics. Thus, the importance of the optimal composite metric does not wane
due to advances in the technological of measurement.

6.3. Implications for managers

The managerial implications pertain to the attribution and budgeting problems. The attribution problem refers to assigning
how much sales increase is due to incremental advertising or promotions, whereas the budgeting problem is to map the attribu-
tion results to obtain the appropriate spending levels on advertising and promotions. Both the attribution and budgeting problems
are impacted by the unreliability of sales metrics.

In the context of attribution problems, the key question that arises is, is the observed sales increase due to advertising (or pro-
motions) or is it due to measurement error? Measurement errors inject uncertainty that obscures the assessment of pure adver-
tising effect, i.e., the marginal sales increase attributable to incremental advertising after controlling for noise. To hedge this
uncertainty, managers should find another sales metric from a different source, even if it is noisier, to create the composite metric,
which serves as the variance reduction device (see Proposition 1). Conceptually, to the extent that both noisy metrics increase (or
decrease) as advertising spending varies, the less likely it is the effect of measurement noise. In other words, multiple metrics en-
able teasing apart the marketing-mix effectiveness from the measurement noise effect. Hence, the implication for attribution prob-
lems is that managers should use multiple sales metrics and combine them appropriately via Proposition 1.

In the context of budgeting problems, the key question that arises is, is the relation between themarketing-mix effectiveness and
the optimal budget moderated by the presence of measurement noise? Proposition 3 uncovers this moderating effect of unreliability
on the optimal budget. Specifically, it reveals that the optimal total budget should be reduced in the presence of unreliable metrics,
and more so on advertising than on promotions. Thus, the implication for managers is simply this: save money by reducing wasteful
spending onmarketing. To accomplish this goal, managers need to estimate themeasurement noise levels via the proposed approach,
calculate the correction factor (¼ π2

1ϕ1þπ2
2ϕ2

1þπ2
1ϕ1þπ2

2ϕ2
), and then adjust the marketing budget and its allocation as per Proposition 3.

6.4. Limitations and future research

Our empirical application includes the relevant marketing-mix variables, namely, advertising, promotions, and distribution ac-
tivities of the hair oil brand in Indian markets. Because this brand enjoys market power, it maintains prices nearly constant over
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time and identical across regions. Consequently, the price effects cannot be estimated. Future researchers can study other brands
that vary prices over time (or regions) by extending the proposed model appropriately. Such analysis would contribute new in-
sights into how unreliable metrics moderate the optimal pricing decisions, for example, should managers underprice to hedge
the uncertainty in latent demand?

Our empirical application illustrates that the measurement noise and bias formulated in Eq. (1) exist in the real markets. We
furnish strong evidence that measurement noise and bias are large and statistically significant in all the six regions, which cover
over 80% of the national sales. These results may be generalized to multiple brands and several countries. Future researchers may
address new important questions. For example, managers collect sales data from multiple vendors such as GfK and Nielsen. Which
vendor is more reliable? Should managers pay to obtain metrics from the less reliable vendor? The answer to the first question
comes from quantifying the reliability of the two metrics. The answer to the second question requires balancing the incremental
cost of purchasing the second sales metric with the corresponding savings due to the lower optimal marketing budget (via
Proposition 3). We believe such studies would not only inform managers to make improved marketing decisions, but also augment
our marketing understanding with new insights hitherto unavailable in the extant literature.
7. Conclusion

The adverse consequences of metrics unreliability on statistical issues (e.g., inconsistency, attenuation bias) are well known, but
there exists sparse knowledge on how measurement unreliability affects strategic marketing decisions: marketing budget, alloca-
tion, or overspending? Hence we contribute three new propositions.

Proposition 1 provides a constructive way for both managers and researchers to improve reliability by combining two unreli-
able metrics. It reveals that the two independent noisy metrics when properly combined are better than one in terms of reliability. This
result is important because researchers do not usually tend to combine metrics (see the last column of Table 1, or see Bass et al. (2007,
p. 184) who had twometrics but did not combine them). It also shows that, even if technology improves the reliability of futuremetrics,
the composite metric that combines the independent noisymetrics from yester years with the new less noisy ones has greater reliability
than that of the “new and improved”metrics. Hence the value of Proposition 1 endures beyond technological progress.

Proposition 2 presents the optimal budget and its optimal allocation to advertising and promotions in the presence of unreli-
able sales metrics. It provides closed-form expression for the correction factor that managers can calculate and then adjust their
budget and allocation decisions. In other words, managers can use the proposed approach to find close-to-optimum solutions
by applying it in a marketplace a few times until the optimum is reached.

Proposition 3 sheds light on how overconfidence in metrics leads to overspending in marketing. Specifically, managers will
overspend when they ignore measurement noise. This overspending is asymmetric— ignoring measurement noise leads to more
overspending on advertising than on promotions (see Fig. 2).

Because measurement errors inject inconsistency in parameter estimation, we developed a method to control measurement er-
rors and restore consistency in parameter estimation. Thus, managers and researchers alike should use the proposed method to
obtain consistent estimates even in the presence of unreliable metrics.

Besides the above theoretical and methodological contributions, we offer new empirical results from six markets of India. The
goal of our empirical application is to illustrate and confirm that the measurement noise and biases assumed in Eq. (1) do exist in
the real markets. Empirical results furnish new evidence that the measurement noise and biases are large and statistically signifi-
cant in the six regions of India (covering 80% of national sales) and in both the metrics (retail offtakes and secondary sales).

We hope managers and researchers use the proposed framework to control metrics unreliability and eliminate marketing
overspending.
Appendix A. Derivation of Pt

We derive Eq. (7) by noting that Pt ¼ E½ωtω0
t jIt �, where
ωt ¼ αt−α̂t

¼ αt− α̂tjt−1 þ Kt Yt−Ŷ t

� �h i
¼ αt−α̂tjt−1

� �
−Kt Yt−Hα̂tjt−1

� �
¼ ωtjt−1−Kt Hαt þ ϵt−Hα̂tjt−1

� �
¼ ωtjt−1−KtH αt−α̂tjt−1

� �
−Ktϵt

¼ ωtjt−1−KtHωtjt−1−Ktϵt
¼ I−KtHð Þωtjt−1−Ktϵt

ðA1Þ
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To evaluate Pt ¼ E½ωtω0
t jIt �, we first multiply the cross product terms and then evaluate the expectations as follows:
Con
Pt ¼ E ωtω
0
t jℑt

� �
¼ E I−KtHð Þωtjt−1−Ktϵt

n o
I−KtHð Þωtjt−1−Ktϵt

n o0h i
¼ I−KtHð ÞE½ωtjt−1ω

0
tjt−1 I−KtHð Þ0− I−KtHð ÞE½ωtjt−1ϵ

0
t

i
K 0
t−KtE ϵtω

0
tjt−1 I−KtHð Þ

0
þ KtEϵtϵ

0
t

h i
K 0
t

¼ I−KtHð ÞPtjt−1 I−KtHð Þ0 þ KtRK
0
t

ðA2Þ
where the last equality follows because the middle terms vanish given the independence across periods.

Appendix B. Proof of Proposition 1

We derive the expressions for k1∗ and k2
∗ to combine the unreliable metrics Y1 and Y2. Recall that, abstracting from the dynamics

to suppress time subscripts (but not ignoring it in the estimation Section 3.3), Ŝ ¼ k�1Y1 þ k�2Y2, where k�1 k�2
� �

are the elements
from the first row of the matrix K∗=PH′(HPH′+R)−1.

Let {pij} denote the elements of the 3×3 matrix P, with p11=σS
2, the 2×3 matrix H ¼ π1 0 0

π2 0 0

� �
, and the 2×2 matrix

R ¼ σ2
1 0
0 σ2

2

� �
. Then the 2×2 matrix (HPH′+R) equals π2

1σ
2
S þ σ2

1 π1π2σ2
S

π1π2σ2
S π2

2σ
2
S þ σ2

2

� �
;and so its inverse is

π2
2σ

2
S þ σ2

2 −π1π2σ2
S

−π1π2σ2
S π2

1σ
2
S þ σ2

1

� �
=D, where D=π22σs

2σ1
2+π12σs

2σ2
2+σ1

2σ2
2. Also the matrix PH0 ¼

π1σ2
S π2σ2

S
π1p21 π2p21
π1p31 π2p31

24 35.

sequently, we obtain

k�1 ¼ π1ϕ1

1þ π2
1ϕ1 þ π2

2ϕ2
ðB1Þ
where ϕi=σS
2/σi

2 represents the signal-to-noise ratio in the metric Yi. Similarly, we obtain
k�2 ¼ π2ϕ2

1þ π2
1ϕ1 þ π2

2ϕ2
ðB2Þ
The closed-form expressions in (B1) and (B2) furnish the optimal weights to combine the unreliable metrics, thus proving
Proposition 1.

Appendix C. Optimal budget and allocation in the presence of unreliable metrics

We solve the marketing budgeting and allocation problem stated in Eq. (15):
Max u;vð Þ Π u tð Þ; v tð Þð Þ ¼
Z ∞

0
e−ρt mS tð Þ−u tð Þ−c tð Þv tð Þ½ �dt


 �
subject to

(i) dS
dt ¼ β1ðtÞ

ffiffiffiffiffiffiffiffiffi
uðtÞp þ β2ðtÞvðtÞ−δS,

(ii) Y1t
Y2t

� �
¼ π1 St

π2St

� �
þ ε1t

ε2t

� �
.

The presence of measurement noise in the metrics introduces uncertainty, which is represented by the Wiener processes in
Eqs. (16) and (17). Consequently, to maximize the total profit Π(u,v), we need to solve a stochastic control problem.

To this end, we formulate the Hamilton-Jacobi-Bellman equation as follows:
ρV ¼ Max m k�1Y1 þ k�2Y2
	 


−u−cv
	 
þ _V1 π1β1

ffiffiffi
u

p þ π1β2v−δY1
	 
þ _V2 π2β1

ffiffiffi
u

p þ π2β2v−δY2
	 
þ 0:5σ2

1 1þ δð Þ2 €V1 þ 0:5σ2
2 1þ δð Þ2 €V2

h i
;

ðC1Þ
where we suppress the time argument for clarity, use the result in Proposition 1, and denote the value function by V(Y1,Y2), with
its first partial derivatives as _Vi ¼ ∂V=∂Yi and the second partial derivatives as €Vi ¼ ∂2V=∂Y2

i for each metric i∈(1,2). Thus Eq. (C1)
is a second-order partial differential equation.
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Next, to determine the optimal advertising, we differentiate the right hand side of Eq. (C1) with respect to u and get the first-
order condition (FOC) as follows:
−1þ
_V1π1β1

2
ffiffiffi
u

p þ
_V2π2β1

2
ffiffiffi
u

p ¼ 0; ðC2Þ
which upon re-arrangement gives the optimal advertising:
u� tð Þ ¼ 0:5β1 π1
_V1 þ π2

_V2

� �� �2
: ðC3Þ
Based on previous research (e.g., Aravindakshan et al., 2012), we specify the value function V(Y1,Y2)=v0+v1Y1+v2Y2. Conse-
quently, _V1 ¼ v1; _V2 ¼ v2; and €Vi ¼ 0: To further express (v1,v2) in terms of the model parameters, we replace u∗=
(0.5β1(π1v1+π2v2))2 in the HJB Eq. (C1) and equate the coefficients for (Y1 ,Y2) on both sides of the equality. Simplifying the
resulting algebra, we obtain.
v1 ¼ mk�1
ρþ δ

; and v2 ¼ mk�2
ρþ δ

: ðC4Þ
Using the expressions in (C4) and the optimal weights (k1∗ ,k2∗) from Proposition 1, we thus characterize the optimal advertising
strategy in the presence of unreliable metrics:
u� tð Þ ¼ u�
0 tð Þ � π2

1ϕ1 þ π2
2ϕ2

1þ π2
1ϕ1 þ π2

2ϕ2

 !2

; ðC5Þ
where u0
∗(t)=(0.5mβ1(t)/(ρ+δ))2.

Finally, to determine the optimal promotion timings, we differentiate the right hand side of Eq. (C1) with respect to v to
get
−cþ β2 π1
_V1 þ π2

_V2

� �
; ðC6Þ
which is not a function of the decision variable, v(t).Hence the optimal solution belongs to the class of bang-bang controls, indi-
cating when to switch “on” or “off” based on the switching function specified by Eq. (C6). Using the expressions in (C4) and the
optimal weights (k1∗ ,k2∗) from Proposition 1, we thus characterize the optimal promotion strategy in the presence of unreliable
metrics:
v� tð Þ ¼ 1; if v�0 tð Þ � π2
1ϕ1 þ π2

2ϕ2

1þ π2
1ϕ1 þ π2

2ϕ2
Nc tð Þ

0; otherwise

8><>: ðC7Þ

where v0
∗(t)=mβ2(t)/(ρ+δ).
The closed-form expressions in (C5) and (C7) comprise the optimal marketing allocations in the presence of unreliable data,
thus proving Proposition 2.

Appendix D. Identification

We discuss the identification of parameters in Eq. (1). In static structural equation models (e.g., LISREL), Yi is mean-centered,
E[S]=0, and σS

2=1. Then, the sample covariance matrix Cov(Y1,Y2) yields the three sample moments (i.e., two variances and
one covariance), which offer three equations to solve for the five unknown parameters (π1,π2,σ1

2,σ2
2,ρ)′. Specifically, the three

equations are as follows:
Var Y1ð Þ ¼ π2
1 þ σ2

1

Var Y2ð Þ ¼ π2
2 þ σ2

2
Cov Y1;Y2ð Þ ¼ ρσ1σ2 þ π1 π2:
This shortage of information — fewer equations than unknowns — is the source of non-identification in static models. Hence,
two unknown parameters must be fixed, leading to the usual choices of π1=1 and ρ=0 so that (π2,σ1

2,σ2
2)′ can be identified.

In contrast, all five parameters (π1,π2,σ1
2,σ2

2,ρ)′ are identified in dynamic models. To see this point, we recall that the dynamic equa-
tions such as those in Eqs. (2) or (3) can be expressed in the canonical vector-matrix transition equation αt=Ttαt−1+ct+νt in the
state space modeling framework (see Harvey, 1994). Then the state vector αt is a random variable, whose first two moments are
identified by the Kalman filter via the celebrated closed-form recursions of the mean state vector at and the covariance matrix



778 S. Sridhar et al. / International Journal of Research in Marketing 34 (2017) 761–779
Pt (e.g., see Naik et al., 1998, Appendix B). Because the first equation in Eqs. (2) or (3) pertains to latent sales, the first element of the
mean state vector is a1=E[S] and the first diagonal element of the covariance matrix P11=σS

2. Because E[S]=a1≠0, we get the five
equations as follows:
E Y1ð Þ ¼ π1E Sð Þ
E Y2ð Þ ¼ π2E Sð Þ
Var Y1ð Þ ¼ π2

1σ
2
S þ σ2

1

Var Y2ð Þ ¼ π2
2σ

2
S þ σ2

2

Cov Y1;Y2ð Þ ¼ ρσ1σ2 þ π1π2σ
2
S

Consequently, the first two equations identify πi ¼ Yi=a1, for i=1,2,and Yi ¼ E½Yi� are the ensemble averages. In other words,
E[Yi] is an average over the ensemble of time paths from the stochastic process Yit for every t; it is not an average over a time
span and the moments are available for every t. Because we know σS

2 from the first element of Pt and have identified (π1,π2)
above, the remaining three equations can be solved for the three unknown parameters (σ1

2,σ2
2,ρ). Thus, all five unknown param-

eters are identified in dynamic models with bias and noise in each metric. The intuition for this result is that repeated observations
over time permit identification because the Kalman filter recursions furnish the moments of a state vector, which are not available
in static models.
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